Мегаобучалка Главная | О нас | Обратная связь


РАЗВИТИЕ НАУЧНЫХ ОСНОВ И МЕТОДОВ СИНТЕЗА композиционных МАТЕРИАЛОВ специального назначения



2019-12-29 198 Обсуждений (0)
РАЗВИТИЕ НАУЧНЫХ ОСНОВ И МЕТОДОВ СИНТЕЗА композиционных МАТЕРИАЛОВ специального назначения 0.00 из 5.00 0 оценок




 

Пензенский государственный университет архитектуры и строительства

 

С начала второй половины XX в. возникла и получила последующее развитие теория искусственных строительных конгломератов (ИСК) как важнейший компонент современного строительного материаловедения. Она была разработана И.А. Рыбьевым и его научной школой. В ней изложены: сущность теоретической технологии; научные принципы формирования оптимальных структур, при которых материалы становятся подобными между собой экстремальными значениями структурочувствительных свойств; общие и притом объективные (т.е. встречающиеся в природе) закономерности изменения свойств (закон створа, закон конгруэнции, закон прочности и некоторых других свойств) в математических выражениях; основные аспекты долговечности материалов; теория методов (методология) научного исследования и технического контроля качества и т.п.

Общая теория ИСК состоит из четырех взаимосвязанных разделов – теория структурообразования; структурная теория прочности, деформированности и конгруэнции свойств ИСК при оптимальных структурах; теория долговечности ИСК в конструкциях зданий и сооружений; теория методов научного исследования и технического контроля качества ИСК.

Оптимальная структура характеризуется: равномерным распределением по объему заполнителя, фаз, компонентов, пор и других составляющих ее элементов; отсутствием или минимальным содержанием дефектов как концентраторов напряжений или аккумуляторов агрессивной среды; наличием непрерывной пространственной сетки, или матрицы, из вяжущего вещества; минимальным значением отношения массы среды к массе твердой фазы, именуемого условно как фазовое отношение; наибольшей плотностью упаковки твердых частиц как в микро-, так и в макроструктурной частях.

Многолетний процесс накапливания теоретических и практических знаний об отдельных материалах и технологиях достиг такой интенсивности, что назрела настоятельная необходимость качественной трансформации и систематизации этих знаний в рамках единой обобщающей теории. Такой теорией стала полиструктурная теория, разработанная В.И. Соломатовым и его школой в 60-70-е годы прошлого столетия. Ее появление обусловле­но объективной необходимостью систематизации и обобщения огромной научной и практической информации о технологиях конкретных строительных материалов на традиционных и новых связующих с применением последних достижений физики, химии и других фундаментальных наук. Это, прежде всего, касается бетонов на цементных, асфальто-битумных, полимерных, металлических и других связующих, информация о которых рассеяна по многочисленным источникам, различно и противоречиво трактующих их получение, свойства и применение в строительстве.

Главная отличительная особенность новой теории заключается в том, что принцип полиструктурности представляется не только как классификационный фактор или методический прием для объяснения тех или иных особенностей структуры и свойств материала, а как ключ к направленному изменению и формированию требуемых физико-технических свойств этого материала и к назначению его рациональной технологии. В соответствии с этой теорией бетоны представляются полиструктурными, т.е. составленными из многих структур (от атомных и молекулярных до грубых макроструктур), переходящих одна в другую по принципу «структура в структуре». С инженерной точки зрения, наиболее важно рассмотрение общей структуры на двух характерных уровнях: микроструктура и макроструктура. Такое разделение структуры достаточно для практической технологии и хорошо отражает объективные закономерности структурообразования и формирования свойств композитов – бетонов. При этом имеется в виду, что внутри микро- и макроструктуры заключены структуры, отличные от рассматриваемых уровней.

За прошедшие годы был накоплен огромный опыт проектирования и производства строительных материалов и композитов специального назначения. Помимо строительного материаловедения произошел бурный рост множества других наук: математики, кибернетики, физики, философии и т.п. и появилась возможность соединения лучших достижений смежных наук для нужд строительства. Это привело к дальнейшему развитию основ строительного материаловедения. В частности, авторами предпринимается попытка применить достижения теории оптимального управления и системного анализа при синтезе композиционных материалов специального назначения.

В настоящее время существует актуальная потребность создания наукоемких методологий для начальных этапов поиска решений трудных, нестандартных практических задач, содержащих трудно формализуемые и высокие требования к качеству управления, оценивания и прогнозирования. При разработке таких методологий основную роль играет системный подход к исследованию проблем идентификации, фундаментальные исследования математических и вычислительных проблем управления, концептуальных аспектов идентификации и моделирования, компьютерных проблем развития информационно-вычислительной среды. Это в полной мере относится и к строительному материаловедению.

При решении задач идентификации возникает вопрос: существуют ли какие-либо чувственно-воспринимаемые наглядные характеристики объективной реальности, измерения которых позволили бы достоверно утверждать, что при поиске решения практической проблемы лучше использовать непараметрические условия, чем параметрические (или наоборот); или все зависит от априорной нацеленности исследователя на применение определенного математического аппарата и от степени его разработанности (от наличия достаточных для отыскания решения практических проблем операциональных возможностей)? Конкретные математические и прикладные исследования часто опережаются и подсказываются математической интуицией и методологией.

Применение математического аппарата теории управления осложняется абстрактностью и отсутствием наглядности основных математических понятий, настолько сильно отличающихся от естественных для человека базисных понятий, что возникает необходимость создания возможностей перехода от явлений реального мира в виртуальный мир математической теории и обратно из виртуального – в объективную реальность (идентификации). В процессе идентификации создаются все необходимые описания реальности. Переход от объективной реальности к модельным представлениям математической теории и обратно связан с внутренними механизмами реальной идентификации со способностями субъекта идентификации, с возможностями информационной поддержки. Ясно одно, любая методология будет включать процесс человеческого выбора при выработке текущего выполнения процесса идентификации.

Под структурной идентификацией в настоящее время понимается поиск адекватного семейства математических моделей (альтернатив) для параметрической или непараметрической идентификации. В определении не указывается, что понимать под словами «поиск», «адекватность». В настоящее время нет общепризнанного толкования их смысла и значения и детально разработанных трактовок. На предметно-содержательном наглядном уровне поиск осознается как сложная интеллектуальная деятельность, где доминирующую роль играют технологические и теоретические знания, интуиция, здравый смысл и опыт субъекта идентификации; для формулировки его научного понятия целостный наглядный образ реальных процессов следует выразить на языке теории идентификации. На концептуальном (объяснительном) уровне считается, что в процессе структурной идентификации существенную роль играют интуиция и жизненный опыт лица, принимающего решение. На уровне конкретного теоретического исследования основные интеллектуальные усилия направляются на структуризацию и абсолютную формализацию данного процесса. В рамках математического дисциплинарного образа наиболее важны теоретические исследования по разработке алгоритмов генерации и перебора структур (структура – заданное семейство математических уравнений), выбор и оценка качества «наилучшей» структуры. Налицо конфликт между разными образами структурной идентификации, являющийся важным фактором постановки и решения новых теоретических задач. Не менее сложная ситуация связана со словом «адекватность».

В настоящее время содержанием математической теории структурной идентификации является математическое моделирование и исследование актуальных проблем локальных фрагментов без учета их реального контекста (их учет возможен при наличии отображения всего наглядного образа на дисциплинарный уровень при разработанных математических основах структурной идентификации).

Широко распространено словосочетание «структура математической модели объекта». Смысл выражения интуитивно ясен. Сложность вызывает обоснование употребления слова «структура». В математике этот термин имеет точно определенный смысл и существенно отличается от традиционно принятого в теории идентификации. Поэтому в настоящее время употребляется выражение «тип модели объекта», которое трактуется как семейство уравнений, к которому принадлежит модель объекта (в случаях, когда речь идет не о математической модели, например, «структура содержательной модели объекта», внутренних возражений употребления слова «структура» не возникает).

Приведем основные задачи, непосредственно связанные с проблемой структурной идентификации. В их числе:

- математический выбор типа ковариационной матрицы выхода многомерной системы, порядков дискретных динамических моделей на основе ранговых критериев, типа модели нелинейного динамического объекта;

- оценивание достоверности результатов при использовании различных методов практической идентификации;

- переход от идеи к адекватной математической задаче;

- локальная и глобальная идентифицируемость типа модели в пространстве состояний;

- автоматизация процессов структурной и параметрической идентификации;

- математический выбор типа моделей нелинейной системы из нескольких семейств нелинейных дифференциальных уравнений при различных входных процессах и воздействиях;

- многомерный статистический контроль технологического процесса по регрессионным остаткам и др.

Концепция структурной идентификации допускает наличие человеческого фактора. Интуиция, жизненный опыт и здравый смысл признаются в качестве основных инструментов субъекта структурной идентификации (доминирование творческих способностей человека над ценностью современного теоретического знания).

Допускаются различные типы структурной идентификации (в узком смысле понимается как особая человеческая деятельность, направленная на построение адекватной математической постановки практической задачи), включающей этапы:

- разработка содержательной постановки практической задачи,

- выбор математической задачи с заданными параметрами,

- поиск адекватных значений заданных параметров математической задачи,

- коррекция содержательной постановки практической задачи,

- предварительный выбор и алгоритмизация адекватной постановки,

- поиск решения пробной постановки практической задачи и др.

Как видим, идентификация рассматривается как процесс порождения знания, необходимого для внедрения в практику методов и алгоритмов математики.

При поиске решений задач управления сложными системами (например, управления качеством строительных материалов) наибольшая ответственность возникает при процедуре принятия решений. Такие объекты плохо формализуемы. К ним сложно применить аппарат математического программирования, построить математические модели объектов и т.д. Сама процедура принятия решения затрудняется сложной иерархией задач. Задачи оперативного управления являются лишь фрагментами глобальной задачи управления качеством и локальной задачи; должны отслеживаться их критерии. Попытки строить полностью автоматические системы управления качеством, в большинстве случаев обречены на неудачу, поскольку Человек имеет безусловный приоритет перед результатами анализа (например, многокритериальная оценка строительных материалов коллективом экспертов). Поэтому любые попытки создания автоматизированных систем оценки качества с применением алгоритмов параметрической идентификации являются актуальными. В обозримом будущем вряд ли можно будет говорить о решении всех вопросов теории идентификации. Создание и внедрение прототипов новых систем идентификации чрезвычайно актуальны. Однако это не исключает актуальности и тиражирования эталонных прикладных разработок теории идентификации в различные отрасли промышленности (например, создание шкалы оценок качества материалов, аналогичной шкале Купера-Харпера, используемой для оценки пилотажных свойств летательных аппаратов).

В основе разработки методов оптимизации структуры и свойств строительных материалов лежит решение задачи идентификации кинетических процессов в гомогенных и гетерогенных системах. Поскольку при разработке материалов, как правило, имеются экспериментально полученные зависимости изменения контролируемых параметров от времени, наибольший интерес представляют методы идентификации динамических процессов по данным нормального функционирования и по синхронным измерениям фазовых координат в процессе нормальной эксплуатации. Наиболее перспективным при разработке методики синтеза материалов представляется использовать данные о кинетических процессах формирования физико-механических характеристик материалов, обычно имеющих вид кривых, приводимых на рисунке.

Указанные процессы в большинстве случаев можно рассматривать как решение дифференциальных уравнений n-порядка при заданных начальных условиях. При этом, во всяком случае, при начале исследования, поиск динамической модели процесса (дифференциального уравнения заданного порядка) можно осуществить в предположении постоянства параметров модели.


Некоторые виды кинетических процессов в строительных материалах

(1 – в гомогенной, 2, 3 – в гетерогенной системах)

 

Будем предполагать, что контролируемый параметр x с течением времени асимптотически приближается к эксплуатационному значению x=xm. При указанных предположениях задача синтеза материалов последовательно сводится к:

§ решению общей задачи идентификации (выбору порядка и вида дифференциального уравнения);

§ параметрической идентификации в рамках выбранной структуры (определению параметров модели);

§ изучению влияния параметров модели на вид кинетических процессов в рамках выбранной модели;

§ оптимизации параметров модели;

§ установлению связи параметров модели и контролируемых параметров;

§ оптимизации рецептуры и технологии производства материала в соответствии с полученными оптимальными параметрами модели.

Предлагаемая методика синтеза материала основывается на использовании характерных признаков экспериментально полученных данных о кинетических процессах в строительных материалах. Это, прежде всего, наличие или отсутствие точек перегиба, апериодичность, а также отсутствие колебательности переходных процессов.

Параметрическая идентификация кинетических процессов сводится к определению параметров обобщенной модели (например, корней характеристического полинома).

При решении отдельных задач целевая функция формируется с учетом как реакции системы на пробные воздействия, так и синхронных измерений характеристик системы и управляющих воздействий в процессе нормальной эксплуатации.

Учитывая сложность моделей систем и трудность установления влияния рецептурно-технологических параметров на характеристики материалов, определяется методика управления выходными характеристиками материала (на основе изучения кинетических процессов формирования физико-механических характеристик материала). Определяются перекрестные связи между свойствами материала. На их основе уточняются структурные и математические модели систем и подсистем с последующей идентификацией параметров (для отдельных систем – из условий получения экстремумов целевых функций).

Построение модели осуществляется в рамках дифференциальных уравнений с постоянными коэффициентами, порядок которых выбирается, исходя из числа точек перегиба. Корни характеристического уравнения предполагаются действительными и отрицательными. Решение задачи Коши ищется в форме уравнения Эйлера. В дальнейшем устанавливается связь между корнями уравнения и параметрами модели.

Для синтеза материала в дальнейшем разрабатывается функционал качества, учитывающий связь характеристик материала с корнями характеристического бинома и коэффициентами уравнения. Строятся области равных оценок, позволяющих использовать регулярные методы синтеза материалов.

Методика легко обобщается на случай более сложных кинетических процессов, имеющих больше одной точки перегиба, и прошла апробацию при синтезе полимерных композиционных материалов для защиты от радиации с регулируемыми параметрами структуры и свойств.



2019-12-29 198 Обсуждений (0)
РАЗВИТИЕ НАУЧНЫХ ОСНОВ И МЕТОДОВ СИНТЕЗА композиционных МАТЕРИАЛОВ специального назначения 0.00 из 5.00 0 оценок









Обсуждение в статье: РАЗВИТИЕ НАУЧНЫХ ОСНОВ И МЕТОДОВ СИНТЕЗА композиционных МАТЕРИАЛОВ специального назначения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (198)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)