Мегаобучалка Главная | О нас | Обратная связь


Технология решения задач



2019-12-29 159 Обсуждений (0)
Технология решения задач 0.00 из 5.00 0 оценок




Первое, на что необходимо обратить внимание – создание доверительной, взаимно уважительной, рабочей, творческой атмосферы. На любых занятиях вне школьной программы (курсы, кружок и т.д.) этого добиться гораздо проще, так как над учеником не висит страх плохой оценки в журнал. Первое время, выход к доске на курсах может быть для ученика стрессовой ситуацией. Хотя ученик знает, что никаких оценок на курсах нет. Можно напомнить, что вся история физики, да и вообще естественных наук построена на ошибках, что ошибка сужает зону поиска правильного решения. И, кроме того, хоть выход к доске и вызывает стресс, однако запоминание в состоянии умеренного стресса происходит лучше и на большее время. Таким образом, в группе появляется маленькое сообщество желающих постоянно решать задачу у доски, так что выстраивается некоторая очередь, желающих преодолеть себя.

Второе – необходимо потратить время, на то чтобы разобраться в том, что означает – решать задачу, каковы принципы и механизмы решения задач, какие знания нужны, какие приемы существуют. Здесь мы разбираемся по пунктам:

Знание теории. Часто ученик говорит: « Когда, я не понимаю чего-то в теории, я не могу решать задачу, или у меня остается чувство неудовлетворенности, поэтому я не люблю решать задачи». Надо объяснить некоторые вещи в физике, вообще о науке, которые,  может  быть,  ученику покажутся, странными, парадоксальными.     А именно: «Любая наука знает, и будет знать меньше, чем она не знает. Никто на Земле не знает что такое гравитационное поле, что такое электрический заряд, механизм превращения магнитного поля в электрическое, и наоборот. Однако, нам не мешает это незнание, описывать некоторые физические процессы. Мы можем не знать всю физиологию дыхание, но это незнание не мешает нам дышать. Часто результат опыта мы можем зафиксировать, измерить, подвергнуть математическому анализу, предвосхитить на его основе результаты новых опытов, но также часто мы не можем понять сущность происходящих в этом опыте процессов. Невозможно создать, например, высокотехнологичный самолет-перехватчик МИГ-31 в теории, и сразу, без огромного числа испытаний каждого узла, изменений в результате каждого испытания, запустить в серию. Физика создает теоретические модели, не всегда отвечающие сущности явления, а лишь, до поры удовлетворяющие опыту. Однако, если мы пытаемся, несмотря на это решать задачи, продолжаем ставить физические эксперименты, мы лучше начинаем понимать теорию т.е. строить теоретические модели». Ясное понимание этого парадокса способствует тому чтобы, не заостряя внимания на некоторые неясности в теории, не мешали ему осваивать технологию решения задач.  «Знать физику – это уметь решать задачи по физике».

Такое отношение к задаче по физике, часто выручает, когда вопрос сформулирован не достаточно математически четко. Например: найдите объемный расход воды. Если на основе данных, используя известные законы, их математические формулировки, мы решаем задачу, мы обязательно придем к уравнению, в котором окажется две неизвестные величины: V, t. Остается сообразить, что речь идет о расходуемом объеме воды за единицу времени, что математически записывается «V/t - ?», если мы помним правило – «что-то в единицу чего-то».

Все выше сказанное можно дать в виде двух кратких формул:

· «не знаешь в какую сторону сделать шаг – сделай его в любую сторону» (правило восточных единоборств);

· «думать – значит действовать».

Что значит решить задачу. В практическом смысле, если речь идет о количественной (а не качественной) задаче – необходимо неизвестную величину выразить через известные, или получить зависимость (функцию) одной величины от другой, либо отношение величин, по данному условию задачи.

Прежде чем, дать детям алгоритм (очередность конкретных действий), общий для всех задач, и частные – по конкретным разделам физики, необходимо дать (даже под запись) два основных принципа, на которых основано решение любой задачи:

· решить задачу означает – понять условие, понять условие – увидеть процесс;

· «задача решается глазами» - задача решается через визуальное восприятие процесса, записи и оформление задачи.

Оба принципа взаимосвязаны и сводятся к тому, чтобы все события в задаче были смоделированы как можно детальнее

· в воображении («мультик», анимация), может быть, это один из самых сложных навыков, который необходимо осваивать ученику. Выше, уже говорилось об этом. В помощь воображению предлагается

· рисунок, и очень важно – технический рисунок.

Рисунок помогает удержать в воображении некоторые детали, ускользающие из картины воображения. Он может быть и черновой. Но всегда должно выполняться условие: не отягощать рисунок лишними деталями. Например, если сказано, что тело плавает в стакане с водой, совсем не надо изображать стакан, а только границу раздела сред и тело в виде прямоугольника, причем такого размера чтобы на нем можно было отметить объемы надводной, подводной части и общий (v1,v2,v0), и действующие на тело силы.

Основное требование к техническому рисунку – достаточно точное изображение прямых линий, дуг окружностей, углов без линейки, циркуля, транспортира.

От преподавателя требуется, чтобы учащиеся поверили, что от качества выполнения технического рисунка часто в большой степени зависит успех решения задачи, что соответствует правилу – «задача решается глазами». Можно много приводить доводов, в защиту этого одного из самых важных принципов. Но в самое кратчайшее время дети убеждаются в этом сами. Хорошо, когда в этом изначально убежден преподаватель, и каждый раз при решении задачи подсказывает и направляет на оптимальные варианты и технику выполнения рисунка.

Укажем на некоторые приемы и некоторые моменты при работе над техническим рисунком.

Основной принцип для получения четких, правильных линий – работать не кистью, а телом (принцип рейсшины). Например, нарисовать горизонтальную линию на доске можно, отклоняясь на прямых ногах всем телом вправо, а вертикальную – чуть приседая. Нарисовать дугу окружности или всю окружность, можно прямой вытянутой рукой строго зафиксировав тело напротив доски. Если мы даем некоторое время для тренировки у доски, у детей возникает удивление и восторг от красоты линий которые у них получаются без линейки буквально через несколько минут тренировок. Овладев приемами рисования на доске, практически автоматически через некоторое время тоже будет получаться в тетради, только работает не тело, а все предплечье.

Также стоит отметить некоторые важные моменты при работе с рисунком:

· рисунок должен быть достаточно «просторным», иначе, будучи перегружен деталями и обозначениями станет трудным для прочтения. И снова действует принцип: «задача решается глазами»;

· рисунок должен быть максимально адекватен условию задачи. Например, соблюдение углов и пропорций (разумеется, не во всех случаях);

· очень удобно, при решении задачи в общем виде, использовать стандартные углы -300 и 600, тогда возникающие при дополнительных построениях подобные углы легко будут читаться, что не требует дополнительных доказательств равенства углов;

· если в задаче указан квадрат или углы 450 стоит особенно тщательно отразить их на рисунке, что во многих случаях, также освободит от дополнительных выкладок и доказательств.

Вообще же если серьезно относится, и понимать важность качества рисунка многие правила будут напрашиваться по логике и по целесообразности. Например, как наиболее точно построить равносторонний треугольник.

Качество записи при оформлении задачи. Необходимо, убедить учеников, что процесс решения задачи представляет собой создание, обработку и обмен информацией заключенной в следующих объектах:

· условие в задачнике;

· условие в тетради («Дано: »);

· рисунок (диаграмма, график);

· алгебраические выкладки.

Поэтому, чем более точно, лаконично и удобно для восприятия записана эта информация в данных объектах, тем проще осуществляется поиск решения, само решение задачи. Укажем некоторые особенности, и приемы в этой части:

· при переносе информации из задачника в тетрадь, следует читать неявно заданные величины и отмечать их, как на рисунке, или диаграмме, так и в «Дано». Например, скорость в максимальной точке подъема вертикально брошенного вверх тела равна нулю, а ускорение равно ускорению свободного падения. Если не удается выявить сразу такие данные, желательно иметь в запасе место для их записи, при обнаружении. Поэтому, удобно записывать искомые величины сразу под «Дано», а все известные данные или неявно заданные - ниже, таким образом, всегда остается место для добавления обнаруженных величин или величин взятых из справочного источника;

· целесообразно данные записывать сразу в системе «СИ», а не дублировать их отдельной колонкой. Это экономит время и уменьшает вероятность ошибки при подстановке. Да и какой смысл выполнять одну и ту же работу дважды;

· при наличии больших и малых значений целесообразно приучиться записывать величины в виде со степенью, это в дальнейшем, при вычислениях ускорит работу;

· при работе с математическими преобразованиямижелательно внедрять в привычку ученикам некоторые принципы, предварительно объясняя их значение;

· задача решается в общем виде, т.е. необходимо выразить искомую величину через данные в буквенном выражении, и только затем производить вычисления, подставив в полученное выражение числовые значения величин. Такой метод позволяет решать задачу и в тех случаях когда, казалось бы, для ее решения не хватает многих данных. Мы должны объяснить, что хоть эти величины не даны, но в реальности они есть («тело брошено под некоторым углом» - угол неизвестен, но он есть в реальном процессе) и эти величины можно обозначать на рисунке, подставлять в уравнения, просто наша задача, исключить их при решении используемых уравнений. Кроме того, даже если у нас нет таких величин, а мы задачу «решаем частями», каждый раз вычисляя промежуточную величину, мы теряет много времени, так как обычно, в общем виде мы получаем краткое, красивое выражение, и считаем всего один раз.

Существует масса простых приемов, которые требует некоторых усилий при написании, так как часто на это просто не обращают внимание, а в дальнейшем ученику приходится переучиваться, например:

· приучить ученика писать любую дробь с дробной черты. Наиболее распространенная привычка – числитель, черта, знаменатель, что часто приводит к возникновению «многоэтажных» дробей и неудобству работы с ними. Если же мы видим дробную черту, то мы практически форматируем пространство в виде таблицы, а в дальнейшем вносим в эту таблицу другие величины и математические выражения;

· другая «ошибка» - дети обозначают квадратный корень. Потом пытаются записать под него «неожиданно» большое выражение. В дальнейшем такое выражение просто трудночитаемо. Очень просто наоборот: пишем выражение, потом обводим знаком корня. Просто записать, но непросто переучиться;

· часто, мы сталкиваемся с тем, что ученик в 10-11 классе работает с логарифмом, может взять производную функции, но совершенно не справляется с обычными переносами, пропорцией, выражением величины из уравнения. Поэтому в начале обучения, несколько часов желательно затратить на восстановление некоторых забытых разделов математики: алгебры, элементов тригонометрии, перевода единиц, в дальнейшем эти записи могут служить справочным материалом, хотя через короткое время надобность в нем отпадает.

В алгебре особое внимание – правила переноса в пропорциях «крест –накрест», и перенос с обратным знаком. А также правило: «Выразить неизвестную величину – это оставить её одинокой, перенести все лишнее в другую сторону уравнения».

В тригонометрии работа с треугольником и основное «правило» для запоминания: cos, ctg – связываем с «кошечкой», которая любит ластиться – угол прилежащий, sin, tg наоборот – противолежащий.

В векторной алгебре основные принципы, которые первое время необходимо постоянно курировать:

· вектор – не число (нельзя модуль вектора подставить в выражение векторного действия);

· все, что связано с векторами, – это геометрия (вектор, действия с ним изображается только на рисунке, после чего рассматривается геометрическая задача);

· подробно рассмотреть понятия: составляющая вектора, разложение на составляющие; проекцию вектора, как длину составляющей со знаком + или - , указывающих на направление составляющей;

· рассмотреть подробно правило «Действия с векторами - сложение, вычитание, умножение на число автоматически верны для их проекции», так как чаще всего используют два способа решения уравнений содержащих вектора геометрический и в проекциях;

· так как в курсе школьной математики вектор чаще рассматривается как абстрактная математическая категория, желательно с самого начала пояснить его реальный смысл для физики, что в физике без понятия «направление» обойтись невозможно.

При работе с переводами единиц очень важно дать логику перевода. Например:

Для линейных размеров: 1м=101дм=102см=103мм. В обратном порядке – меняем знак степени. Например:

76мм= 76*10-3м.

Для площадей степень удваивается: 1м2=102дм2=104см2=106мм2. В обратном порядке – меняем знак степени. Например:

350дм2= 350*10-2м2=3,5м2

Для объемов степень утраивается: 1м3=103дм3=106см3=109мм3. В обратном порядке – меняем знак степени. Например:

4800000см3= 4800000*10-6м3=4,8 м3

Вообще, лучше уже в 7 классе приучить учеников работать со степенями, а не считать количество нулей.

Можно сделать замечание: 1л=1дм3; 1мл=1см3 .

При переводе х км/ч= х/3,6 м/с хорошо бы дать таблицу наиболее часто встречающихся значений скоростей:

36км/ч=10м/с

18км/ч=5 м/с

72км/ч=20м/с

54км/ч=15м/с

90км/ч=25м/с и т.д.

Учащиеся очень быстро понимают логику этих соотношений, и в дальнейшем ее применяют, что опять же ускоряет процесс решения задачи. Скорость решения задачи важна на экзамене, когда в первые минуты может понадобиться навык механических действий, из-за волнения, возникающего на экзамене.

Для тех, кто ошибается с единицами «СИ», можно дать правило для запоминания - по орбите летает МКС – метры, килограммы, секунды.

Если ребенок начал понимать логику перевода, он легко будет переводить любые единицы.

 



2019-12-29 159 Обсуждений (0)
Технология решения задач 0.00 из 5.00 0 оценок









Обсуждение в статье: Технология решения задач

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (159)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)