Мегаобучалка Главная | О нас | Обратная связь


МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ПРОПУСКА ЛЬДА ЧЕРЕЗ ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ



2019-12-29 238 Обсуждений (0)
МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ПРОПУСКА ЛЬДА ЧЕРЕЗ ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ 0.00 из 5.00 0 оценок




 

10.1. В случае недостаточных размеров ледопропускных пролетов, отсутствия или небольшого опыта пропуска льда через ледосбросы необходимо проведение дополнительных мероприятий по обеспечению успешного прохода льда.

10.2. Эти мероприятия должны быть направлены на увеличение срока задержки начала ледохода перед сооружениями, на снижение толщины и прочности льда или на уменьшение размеров льдин, на пропуск льда без образования арок, заторных скоплений. В отдельных случаях возможно использование локальных средств, облегчающих продвижение льда через сооружение и снижающих силовое воздействие льда.

10.3. В качестве локальных средств, позволяющих обеспечить дополнительный разлом льда или снизить его силовые воздействия, следует использовать специальные конструкции, приводящие к желаемому результату в каждом отдельном случае. Такие конструкции разработаны для разлома льда на искусственных перепадах уровня, для снижения ледовых воздействий на опоры линий электропередач.

10.4. Для улучшения условий пропуска льда створ гидроузла должен располагаться на прямолинейном участке реки, в этом случае ледосбросные сооружения размещаются в стрежневой части реки. При криволинейном участке реки перед сооружениями ледосбросы целесообразно размещать у вогнутого берега, где происходит наиболее интенсивное движение льда в период ледохода.

10.5. С целью предотвращения образования затора в нижнем бьефе, ухудшающего пропуск льда через сооружения, целесообразно выполнять такие мероприятия по ускорению вскрытия реки в нижнем бьефе, как разрушение льда взрывами, ледоколами или иными средствами.

10.6. Для улучшения условий движения льда к сооружениям целесообразно производить:

отделение ледяного поля, находящегося в тупиковой зоне (выше верховой перемычки), от ледяного покрова, располагающегося в зоне движения льда (против водосбросных пролетов);

искусственное разрушение ледяных полей в верхнем бьефе до подхода их к сооружениям, если отсутствуют сосредоточенные перепады или кривая спада со значительным перепадом уровней воды перед сооружением.

Примечание. Выбор способа разрушения ледяного покрова производится с использованием «Методических рекомендаций по предотвращению образования ледовых заторов на реках Российской Федерации и борьбы с ними».

 

10.7. При небольшой площади водохранилища для предотвращения возможного образования затора выше гидроузла и улучшения условий движения льда в районе выклинивания кривой подпора ледяной покров в водохранилище целесообразно разрушать ледоколами. Такое разрушение можно производить по всей площади водохранилища или с образованием продольной полосы для создания канала в ледяном покрове, по которому битый лед проходит к гидроузлу и сбрасывается в нижний бьеф.

10.8. Для облегчения пропуска заторного льда через гидротехнические сооружения целесообразно движущийся по водохранилищу заторный лед временно посадить на мелководных участках, снизив для этого уровень воды. После подтаивания и разрыхления такой лед легче пропускается через гидротехнические сооружения.

10.9. К моменту пропуска льда через плотины должна быть обеспечена маневренность затворов в ледосбросных пролетах. Учитывая это, затворы и закладные части должны быть снабжены установками для обогрева. Наледи у затворов в местах фильтрации воды к моменту пропуска льда удаляются.

Примечание. Расчеты по обогреву затворов и закладных частей производятся в соответствии с ВСН 029-70/Минэнерго СССР.

 

10.10. При решении вопроса пропуска льда через гидротехнические сооружения, прежде всего, должен быть выполнен всесторонний анализ ледовых условий реки с целью выяснения возможностей регулирования ледохода с учетом морфологических особенностей реки (пороги, острова, излучины и т. п.) и вышерасположенных водохранилищ, позволяющих производить изменение попусков воды в предледоходный и ледоходный периоды.

Для проведения взрывных работ (с вертолета или наземным способом) следует в определенных местах сосредоточить необходимое количество взрывчатых веществ.

Примечание: Взрывные и другие работы по разрушению ледяного покрова и затора производятся в соответствии с «Методическими рекомендациями по предотвращению образования ледовых заторов на реках Российской Федерации и борьбе с ними».

 

10.11. Пропуск льда через гидротехнические сооружения в строительный и эксплуатационный периоды следует предусматривать, когда скорость течения в верхнем бьефе достигает значений, способных создать после отрыва льда от берегов подвижку ледяных полей, соизмеримых с шириной реки на прилегающем к плотине участке длиной 5-10 км.

10.12. Пропуск льда через сооружения не является обязательным, если средние скорости потока менее 0,4 - 0,5 м/с.

10.13. Для задержания льда перед сооружениями средняя скорость потока vcp перед гидроузлом на участке длиной до 15В (где В - ширина реки) должна быть меньше следующих значений:

а) при прямолинейном очертании берегов

;                                                    (41)

б) при криволинейном очертании берегов значение vcp, полученное по формуле (41), увеличивается на 30 %;

в) с учетом глубины реки перед сооружениями при прямолинейном очертании берегов

;                                                   (42)

где ; h — глубина воды, м; при криволинейном очертании берегов значение vcp, полученное по формуле (42), увеличивается на 30 %;

г) при наличии данных о коэффициентах шероховатости дна водотока n1 и нижней поверхности льда n2:

;                                                  (43)

где ; h2 = h2 / h — относительная глубина воды под ледяным покровом; h2 — глубина воды от нижней поверхности ледяного покрова до линии максимальной скорости течения на эпюре v = f(h); rw — плотность воды;  — приведенный коэффициент Шези;

 — приведенный коэффициент шероховатости русла с ледяным покровом; R — гидравлический радиус русла при наличии ледяного покрова.

В случае невозможности определения h2

.

10.14. Задержание льда перед сооружениями обеспечивается:

а) для случая строящейся плотины с глубинными водосбросами — путем обеспечения необходимого заглубления верха входного отверстия, определяемого по формулам (32) и (34);

б) для случая водосливной плотины — путем обеспечения необходимого значения открытия затвора, определяемого по формуле (40);

в) для случая сплошной запани или забральной стенки путем обеспечения условия v < vcr, где vcr определяется по формуле (33).

Ряд примеров технических решений, обеспечивающих остановку и задержание льда до сооружения, приведен в Приложении 6.

10.15. Продолжительность временного задержания льда (Dt, сут) на реке выше сооружений с целью его ослабления и сброса в дальнейшем через сооружения следует определять по следующим формулам.

1. При наличии данных о прочности льда на момент вскрытия реки ниже сооружений

,                                                           (44)

где DR = R0f - Rf — понижение прочности льда на изгиб, МПа; R0f — прочность льда на изгиб на момент вскрытия реки ниже сооружений, МПа; Rf — необходимая прочность льда на изгиб к моменту его пропуска через сооружения, МПа; k — интенсивность понижения прочности льда, принимаемая равной: 4 МПа за сутки для водного льда, 2 МПа за сутки для шугового льда.

Примечание: Значение k рекомендуется уточнять на основании материалов натурных исследований.

 

2. При наличии прогностических данных о среднесуточных температурах воздуха значение Dt определяется по сумме этих температур с помощью графика зависимости Sq = f(t) с использованием формулы

,                                                (45)

где Dq — сумма положительных среднесуточных температур воздуха за период Dt, определяемая по кривой Sq = f(t) , построенной в соответствии с прогнозом температур воздуха.

3. При наличии прогностических данных о продолжительности задержания льда необходимое снижение прочности льда определяется по формуле

,                                                    (46)

где S ' — количество поглощенной льдом солнечной радиации (за период Dt), Дж/м3; S0 — количество поглощенной теплоты, необходимое для полной потери льдом его прочности (рассыпание льда на отдельные кристаллы), Дж/м3, которое следует принимать равным:

для волокнистого льда — 0,67·108 Дж/м3;

для зернистого льда — 1,13·108 Дж/м3;

для шугового льда — 1,46·108 Дж/м3;

для снежного льда — 2,29·108 Дж/м3.

При неизвестном виде льда следует принимать среднее значение S0, равное 1,83·108 Дж/м3.

10.16. Уменьшение толщины ледяного покрова Dhd, м, за период задержания льда, определяется по формуле

,                                                         (47)

где S = S1 + S2 — суммарная плотность теплового потока на верхней и нижней поверхностях ледяного покрова, Вт/м2; S1, S2 — плотность теплового потока на верхней и нижней поверхностях льда, соответственно, Вт/м2; Dt — продолжительность задержания льда, ч; r — удельная теплота фазового перехода, равная 3,35·105 Дж/кг.

S1 = Sk + Su + SR;                                                      (48)

Sk = aвозд (tn - J);                                                      (49)

Su = 6,24 · 10-3 (K + W) (e - e0);                                          (50)

.             (51)

10.17. Расчет коэффициента теплоотдачи от поверхности льда (снега) к воздуху рекомендуется производить по следующей формуле [6]:

aвозд = B W, Вт/(м2·К),                                        (52)

где W — скорость ветра, м/с; коэффициент В определяется по табл. 11.

 

Таблица 11

 

Зависимость коэффициента В от температуры воздуха

 

J, °C -40 -30 -20 -10 0 10
B, Дж/(м3·К) 7,12 6,88 6,67 6,48 6,27 6,07

 

10.18. Температура поверхности льда в стационарных условиях должна определяться по формуле

;                                                (53)

при наличии снежного покрова температура поверхности снега

;                                      (54)

где hi ,0 — толщина льда в начале расчетного периода; hs — толщина слоя снега.

10.19. Интенсивность теплового потока при испарении с поверхности льда следует находить по зависимости (50), в которой K определяется как функция разности температур поверхности льда и воздуха (табл. 12).

 

Таблица 12

 

Значение коэффициента K в зависимости от разности температур поверхности льда и воздуха

 

tn - J,°с 0 1 2 3 4 5
K, м/с 1,28 1,62 1,92 2,10 2,25 2,46
tn - J,°с 6 8 10 15 20  
K, м/с 2,60 2,86 3,10 3,60 4,00  

 

10.20. Значения радиационной составляющей на поверхности льда с атмосферой следует рассчитывать по данным, указанным в Приложении 7.

10.21. Плотность теплового потока на нижней поверхности ледяного покрова определяется по формуле

S2 = aв (ttn).                                                         (55)

где aв = 2640 v, Вт/(м2·К); v — скорость течения воды под ледяным покровом, м/с.

ПРИЛОЖЕНИЕ 1

 



2019-12-29 238 Обсуждений (0)
МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ПРОПУСКА ЛЬДА ЧЕРЕЗ ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ 0.00 из 5.00 0 оценок









Обсуждение в статье: МЕРОПРИЯТИЯ ПО РЕГУЛИРОВАНИЮ ПРОПУСКА ЛЬДА ЧЕРЕЗ ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (238)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)