Принцип работы, структура ПЛИС, скоростные характеристики, в каких корпусах выпускается, примеры устройств, фирмы реализации, рынок (объем выпуска), тенденции.
В настоящее время выпускаются следующие серии ПЛИС FPGA: · Серия Virtex · Серия Spartan · Серия ХС4000 · Серия ХС5200 · Серия ХС3000 ПЛИС типа FPGA фирмы Xilinx выполненны по SRAM кМОП технологии. Характеризуются высокой гибкостью структуры и изобилием на кристалле триггеров. При этом логика реализуется посредством так называемых LUT – таблиц (Look Up Table) Xilinx, а внутренние межсоединения – посредством разветвлённой иерархии металлических линий, коммутируемых специальными быстродействующими транзисторами. Отличительными системными особенностями являются: · внутренние буфера с возможностью переключения в высокоомное состояние и тем самым позволяющие организовать системные двунаправленные шины · индивидуальный контроль высокоомного состояния и времени нарастания фронта выходного сигнала по каждому внешнему выводу · наличие общего сброса/установки всех триггеров ПЛИС · множество глобальных линий с низкими задержками распространения сигнала · наличие внутреннего распределённого ОЗУ Xilinx, реализующегося посредством тех же LUT – таблиц (серии Spartan, Virtex, XC4000). · наличие внутреннего блочного ОЗУ, один блок имеет ёмкость 4 кбит (семейства Virtex, Virtex-E, Spartan-II, Spartan-IIE) или 18 кбит (семейства Virtex-II и Virtex-IIPro), всего блоков до 556 на кристалл · наличие встроенных блоков умножителей 18х18 (семейства Virtex-II и Virtex-IIPro), всего блоков до 556 на кристалл · наличие встроенных блоков процессоров PowerPC-405 (семейство Virtex-IIPro), до 4 процессоров на кристалл · наличие высокоскоростных трансиверов(семейство Virtex-IIPro), до 24 со скоростью передачи данных 3.125 ГБит/с каждый
Процесс конфигурации Конфигурационная последовательность (bitstream) может быть загружена в прибор непосредственно в системе и перегружена неограниченное число раз. Инициализация ПЛИС производится автоматически (из загрузочного ПЗУ Xilinx) при подаче напряжения питания или принудительно по специальному сигналу. В зависимости от ёмкости ПЛИС процесс инициализации занимает от 20 до 900 мс, в течение которых выводы ПЛИС находятся в высокоомном состоянии (подтянуты к логической единице).
Статическое потребление энергии достаточно мало и для некоторых серий составляет единицы микроватт. Динамическое же потребление пропорционально возрастает с частотой функционирования проекта и зависит от степени заполнения кристалла, характера логической структуры проекта на кристалле, параметров режима внешних выводов ПЛИС и т. д.
ПЛИС Actel – основа при реализации «SoC» бортовой аппаратуры Сегодня в России, как и во всем мире, подходы к созданию электронных устройств и систем, работающих в тяжелых условиях эксплуатации, существенно меняются. Основная тенденция – переориентация на специализированные изделия с сокращенным циклом проектирования и производства, что позволяет достигать максимальной эффективности при выполнении конкретных задач управления, контроля и сбора информации. Внедрение концепции «системы на кристалле» признано одним из приоритетных направлений развития отечественной электроники, определяющим, по сути, технологию построения будущих поколений бортовой аппаратуры. «Система на кристалле» имеет три принципиальные особенности: o в одной микросхеме технологической платформы (как правило, СБИС или ПЛИС сверхвысокой степени интеграции) реализован функционально законченный набор модулей управления и обработки данных; - встроенный микропроцессор ориентирован преимущественно на выполнение задач управления, а не обработки данных; - поток данных в системе организован непосредственно между контроллерами, а не через микропроцессорную шину.
Реализованная на базе высоконадежной и высокоскоростной ПЛИС «система на кристалле» помимо всех достоинств, присущих решениям на основе СБИС, имеет важные дополнительные преимущества: - значительное сокращение расходов на изготовление микросхем и экономический эффект при реализации проектов малой и средней серийности (до десятков тысяч штук); - возможность высокоэффективной внутрикристальной отладки; - возможность прототипирования изделий для особых условий эксплуатации на основе функционально идентичных, но более дешевых коммерческих исполнений платформы.
- многократно программируемые ПЛИС на основе Flash-технологии; Основное отличие ПЛИС компании от традиционных матриц на основе ячеек СОЗУ – это способ хранения конфигурации. Элементы памяти (перемычки в семействах Antifuse и флэш-ключи в семействах Flash) ПЛИС Actel распределены по всей площади кристалла и являются одновременно ключами, задающими конфигурацию. Такое технологическое решение позволяет избавиться от потенциально ненадежной коммутационной матрицы (ГКМ) на основе ячеек СОЗУ, не защищенных от высокоэнергетических частиц, воздействующих на электронные устройства даже на уровне моря, а также отказаться от всех элементов, участвующих в процессе загрузки конфигурации. На сегодняшний день аналогов этой технологии нет. Рассмотрим современные семейства ПЛИС, предлагаемые компанией Actel. Новые семейства однократно программируемых ПЛИС, выполненных по технологии Antifuse, характеризуются следующими особенностями: - рекордной надежностью – FIT, или число отказов/сбоев на 109 ч наработки не более 10; - большой логической емкостью – до 4 млн. системных вентилей; - рекордной системной производительностью – свыше 500 МГц; - отсутствием процесса загрузки конфигурации и готовностью к работе с момента подачи питания; - отсутствием возможности несанкционированного считывания конфигурации – конфигурация защищена технологией FuseLock, при запуске нет конфигурационной последовательности (bit-stream); - доступом специализированного логического анализатора к любому элементу работающей схемы без затрат трассировочных ресурсов самой ПЛИС; - широким выбором поддерживаемых стандартов ввода-вывода -LVDS, HSTL1, SSTL2/3, GTL+, LVTTL, LVCMOS, LVPECL; - полной совместимостью по корпусам изделий различной емкости и в различном исполнении: от коммерческих до выполненных в соответствии со стандартом MIL-STO-883B и радиационно стойких; - высокой экономической эффективностью.
Выпускаемые компанией Actel многократно программируемые матрицы на основе Flash-технологии имеют следующие достоинства: - возможность перепрограммирования непосредственно в системе (ISP); - логическая емкость до 1 млн. системных вентилей; - малое энергопотребление; - высокая системная производительность – до 350 МГц; - готовность к работе с момента подачи питания – отсутствует процесс загрузки конфигурации; - полная совместимость по корпусам изделий различной емкости и в различном исполнении. Коротко рассмотрим основные требования к организации проектного менеджмента при создании систем на кристалле. Современная система управления разработкой, построенная в соответствии с требованиями международных стандартов качества ISO, должна пердусматривать проведение проектных форумов для обсуждения технических деталей проекта в режиме реального времени. Кроме того, в нее должны входить подсистемы отладки проектов (issue tracking), хранения исходных данных проекта (knowledge base), контроля версий (version control) и планирования для прогноза сроков выполнения этапов проекта и оперативной корректировки планов. При этом значительно возрастают требования к руководителю проекта, который должен оперативно управлять работой группы в реальном времени.
КЛАССИФИКАЦИЯ ПЛИС Микросхемы, программируемые пользователями, открыли новую страницу в истории современной микроэлектроники и вычислительной техники. Они сделали БИС/СБИС, предназначенные для решения специализированных задач, стандартной продукцией электронной промышленности со всеми вытекающими из этого положительными следствиями: массовое производство, снижение стоимости микросхем, сроков разработки и выхода на рынок продукции на их основе. ПЛИС можно классифицировать по многим признакам, в первую очередь: - по уровню интеграции и связанной с ним логической сложности; - по типу памяти конфигурации («теневой»памяти); - по степени зависимости задержек сигналов от путей их распространения; - по схемотехнологии (КМОП, ТТЛШ и др.); - по однородности или гибридности (по признаку наличия или отсутствия в микросхеме областей с различными по методам проектирования схемами, такими как ПЛИС, БМК, схемы на стандартных ячейках). Все перечисленные признаки имеют значение и отображают ту или иную сторону возможных классификаций. Выделяя основные признаки и укрупняя их, рассмотрим классификацию по трем, в том числе двум комплексным, признакам: - по уровню интеграции и однородности/гибридности; - по числу допустимых циклов программирования и связанному с этим типу памяти конфигурации.
В классификации по первому признаку (рис. 2, а) ПЛИС разделены на 4 класса. Оба эти подкласса микросхем реализуют дизъюнктивные нормальные формы (ДНФ) переключательных функций, а их основными блоками являются две матрицы: матрица элементов И и матрица элементов ИЛИ, включенные последовательно. Такова структурная модель ПЛМ и ПМЛ. Технически они могут быть выполнены и как последовательность двух матриц элементов ИЛИ-НЕ, но варианты с последовательностью матриц И-ИЛИ и с последовательностью матриц ИЛИ-НЕ — ИЛИ-НЕ функционально эквивалентны, т. к. второй вариант согласно правилу де Моргана тоже реализует ДНФ, но для инверсных значений переменных.
Выработанные термы поступают на вход матрицы ИЛИ. Эти матрицы для ПЛМ и ПМЛ различны. В ПЛМ матрица ИЛИ программируется, а в ПМЛ она фиксирована.
Рис.3. Обобщённая структура «классической» ПМЛ
«Классические» ПМЛ также позволяют программировать высокоимпедансное (третье) состояние выходного буфера, что делает возможным двунаправленный вывод использовать как вход. Кроме того, индивидуальное управление с помощью отдельного терма третьим состоянием выходного буфера позволяет двунаправленный вывод в один момент времени использовать как выход, а в другой момент – как вход или отключать от внешней шины, например, для уменьшения нагрузки. Возможность ПМЛ передачи значения выходного сигнала по цепи обратной связи на вход матрицы И позволяет в одном устройстве строить многоуровневые каскадные схемы. Однако следует избегать случаев, когда значение некоторой функции является аргументом этой же функции, так как в подобной ситуации схема перестаёт быть комбинационной и переходит в класс последовательностных схем, а отсутствие в циклах элементов задержки приводит к непредсказуемости поведения схемы. Обобщенная структура универсальных ПМЛ (рис.4.) включает n входов, программируемую матрицу И, m выходных макроячеек (MC) с одной обратной связью и m2 макроячеек (MCF) с двумя обратными связями. Архитектура макроячейки с двумя обратными связями показана на рис. 5. В макроячейках с одной обратной связью отсутствует цепь от входа выходного буфера к входу матрицы И. С каждой макроячейкой универсальных ПМЛ связано различное число промежуточных шин, что позволяет более рационально их использовать: простые функции назначать для реализации на выходы, связанные с небольшим числом промежуточных шин, а сложные – назначать на выходы, связанные с большим числом промежуточных шин. Кроме того, каждая макроячейка допускает программирование логического уровня выходного сигнала благодаря наличию в архитектуре макроячейки вентиля Исключающее ИЛИ с программируемой связью одного входа с «землёй». Поэтому из двух функций yi или ¯yi для реализации можно выбрать наиболее подходящую (например, которая требует для реализации меньше промежуточных шин), а необходимый вид функции на выходе ПМЛ образуется путём программирования логического уровня выходного сигнала.
Рис. 4. Обобщённая структура универсальных ПМЛ
Макроячейки с двумя обратными связями допускают одновременное использование в двух целях: для реализации промежуточных функций и для приёма входных переменных.
Рис. 5. Обобщённая структура выходной макроячейки универсальных ПМЛ с двумя обратными связями
Cложные программируемые логические схемы CPLD (Complex Programmable Logic Devices) (сложные программируемые логические устройства) содержат относительно крупные программируемые логические блоки — макроячейки соединённые с внешними выводами и внутренними шинами. Функциональность CPLD кодируется в энергонезависимой памяти, поэтому нет необходимости их перепрограммировать при включении. Несколько блоков, подобных ПМЛ, объединяются средствами программируемой коммутационной матрицы (рис.6.). В CPLD могут входить сотни блоков и десятки и сотни тысяч эквивалентных вентилей. Архитектуры CPLD разрабатываются фирмами Altera, Atmel, Lattice Semiconductor, Cypress Semiconductor, Xilinx и др. Воздействуя на программируемые соединения коммутационной матрицы и ПМЛ, входящих в состав CPLD, можно реализовать требуемую схему. Архитектура функциональных блоков здесь во многом подобна архитектуре универсальных ПМЛ. Отличия заключаются в том, что все выходные макроячейки имеют две обратные связи, а промежуточные шины макроячейкам назначаются с помощью распределителя (allocator). Некоторые макроячейки CPLD не имеют связи с внешним выводом. Такие макроячейки называются скрытыми. Скрытые макроячейки имеют только одну обратную связь.
Рис. 6. Обобщённая структура функционального блока CPLD и его взаимодействие с матрицей переключений
Каждый функциональный блок CPLD будем характеризовать числом входов n; выходных макроячеек m; общим числом макроячеек r, из которых r-m являются скрытыми; суммарным числом промежуточных шин функционального блока q и максимальным числом промежуточных шин qmax, которые могут быть подсоединены к одной макроячейке. Кроме того, общая структура CPLD характеризуется числом E функциональных блоков и числом dI «чистых» входов. · число подсоединяемых к макроячейке промежуточных шин не фиксировано, как для ПМЛ, а определяется для каждой макроячейки индивидуально; · в некоторых CPLD промежуточные шины между макроячейками распределяются кластерами и для реализации любой функции (даже очень простой) необходимо не менее qCL промежуточных шин, где qCL – число промежуточных шин в одном кластере; · для реализации промежуточных функций могут использоваться ресурсы скрытых макроячеек, а также выходных макроячеек, выводы которых используются в качестве входов; · каждый функциональный блок имеет фиксированное число входов n, по которым могут поступать значения аргументов (в ПМЛ число входов может изменяться за счёт использования двунаправленных выводов в качестве входов); · общее число аргументов СБФ, реализуемой на CPLD, может быть достаточно большим (dI + m·E – N), в то время как число аргументов СБФ, реализуемой одним функциональным блоком, ограничено параметром n, имеющим значение от 16 до 36; · все значения аргументов и промежуточных функций поступают на входы функциональных блоков только через матрицу переключений, поэтому при частом дублировании входных переменных различных функциональных блоков возникает опасность быстрого истощения ресурсов матрицы переключений. В качестве примера можно рассмотреть архитектуру микросхем семейства MAX 7000 фирмы Altera [5]. Архитектура MAX 7000 включает следующие элементы: · логические блоки (LAB, Logic array blocks) · макроячейки (МЯ, Macrocells) · логические расширители, разделяемый и параллельный (Expander product terms) · программируемая матрица соединений (PIA, Programmable interconnect array) · блоки управления вводом/выводом (БВВ, I/O control blocks) В структуру ПЛИС MAX 7000 входят четыре специализированных входа. Эти входы могут быть использованы как входы общего назначения для обработки “быстрых” сигналов. Через эти входы на каждую МЯ могут быть поданы глобальные управляющие сигналы (синхронизация, сброс, переход в третье состояние). На рис.7 представлена функциональная схема ПЛИС.
Рис.7 Функциональная схема ПЛИС MAX 7000
К каждому логическому блоку подводятся следующие сигналы: · 36 сигналов от PIA, используемых в качестве логических входов; · глобальные управляющие сигналы; · непосредственные цепи от входных буферов к регистрам, обеспечивающие высокое быстродействие. Макроячейка содержит три функциональных блока: · локальная программируемая матрица (Logic Array); · матрица распределения термов (Product Term Select Matrix); · программируемый регистр (Programmable register). На рис.8 приведена структурная схема МЯ. Комбинационная логика реализуется на локальной программируемой матрице, которая передает пять основных термов в матрицу распределения термов. Матрица распределения термов позволяет реализовать комбинационную функцию путем выполнения операций “исключающее или”, “ИЛИ” над логическими произведениями. Кроме этого, матрица распределения может передать термы на регистры. · разделяемый логический расширитель. Инвертирует терм и передает назад на локальную программируемую матрицу; · параллельный логический расширитель. Передает термы из предыдущих МЯ в последующие.
Рис.8 Структурная схема макроячейки.
Комбинационная логика реализуется на локальной программируемой матрице, которая передает пять основных термов в матрицу распределения термов. Матрица распределения термов позволяет реализовать комбинационную функцию путем выполнения операций “исключающее или”, “ИЛИ” над логическими произведениями. Кроме этого, матрица распределения может передать термы на регистры. · тактирование глобальным синхросигналом. Это самый быстрый вариант; · тактирование глобальным сигналом с применением локального сигнала разрешения тактирования; · тактирование сигналом от локальной программируемой матрицы. В MAX7000доступны два глобальных тактовых сигнала выводы GCLK1 или GCLK2.
Рис.9 Разделяемый расширитель
Расширитель реализует логические функции, состоящие из термов соседних МЯ. Таким образом, МЯ связываются в цепочку. Расширитель позволяет использовать до 20 термов. Пять термов берутся непосредственно из данной МЯ, остальные 15 из соседних МЯ данного логического блока. Дополнительная временная задержка, вносимая расширителем, обозначается tPEXP. Последовательно в цепочку можно соединить до 8 МЯ. Схема параллельного логического расширителя представлена на рис.10.
Рис.10 Параллельный расширитель
Программируемая матрица соединений (PIA) реализует все внутренние связи. С этой шиной соединены все источники и приемники сигналов. Все специальные сигналы, выводы ввода/вывода, сигналы МЯ. На рис.11 показано как сигналы PIA подводятся к логическим блокам (LAB).
Рис.11 Схема передачи сигналов из программируемой матрицы соединений в логические блоки.
Блок управления вводом/выводом позволяет индивидуально конфигурировать каждый вывод ПЛИС. Вывод ПЛИС может быть настроен на ввод, вывод, двунаправленную передачу данных. Все выводы ПЛИС могут быть выводами буфера с третьим состоянием, который может управляться глобальным сигналом. Кроме того, возможен режим работы с открытым коллектором. На рис.6 показана схема блока управления.
Рис.12 Блок управления вводом/выводом
ПЛИС семейства MAX 7000 соответствуют промышленному стандарту 4-pin Joint Test Action Group (JTAG) IEEE Std. 1149.1-1990). Программирование в системе. (In-System Programmability ISP) быстро и эффективно позволяет изменять конфигурацию ПЛИС как в стадии тестирования проекта, как и в течение эксплуатации. Перепрограммирование может быть выполнено непосредственно в системе, для этого необходим только один уровень напряжения 5В. Пока идет программирование, выводы микросхемы переводятся в третье состояние, для избежания конфликта с системой. Сопротивление внутренних “подтягивающих” резисторов 50 кОм. Для программирования используется специальный загрузочный кабель Altera MasterBlaster, ByteBlaster или ByteBlasterMV. Программирование ПЛИС в системе позволяет снизить вероятность повреждения при эксплуатации устройства. Кроме того, модернизация устройства может быть выполнена в полевых условиях, например, с помощью модема. ПЛИС MAX 7000 могут работать в режиме энергосбережения. Этот режим позволяет сократить энергозатраты на 50% и более. Большинство логических функций не используют значительную часть вентилей – этот факт используется для реализации данного режима. На выводы VCCIO может быть подано напряжение питания 3,3В или 5В, в зависимости от требований к выходному каскаду. Когда на выводы VCCIO подано напряжение 5В, уровень выходного каскада соответствует системам 5В. Если подано 3,3В, выходной сигнал соответствует логике 3,3 В, однако совместим и с 5В. Микросхемы программируемых пользователями вентильных матриц FPGA (Field Programmable Gate Arrays)
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (376)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |