Мегаобучалка Главная | О нас | Обратная связь


Методические  указания  по  выполнению  работы



2019-12-29 220 Обсуждений (0)
Методические  указания  по  выполнению  работы 0.00 из 5.00 0 оценок




1. Закаленные в ходе предыдущей лабораторной работы («Закалка углеродистой стали») образцы различных марок углеродистых сталей подвергнуть отпуску при температурах 200, 400 и 600 °С.

2. Исходной структурой стали перед отпуском должен быть мартенсит, поэтому отпускать необходимо только закаленные в воде образцы.

3. Время отпуска принять равным 0,5 часа. Охлаждение после отпуска производить на воздухе.

4. Замерить твердость образцов после отпуска на приборе Роквелла, результаты внести в таблицу 2.

5. По результатам замеров построить графики зависимости твердости Н RС от температуры отпуска для всех исследованных сталей.

6. Сделать выводы.

Таблица 2

№ п/п Марка стали Твердость после закалки, Н RС t отпуска, °C Время нагрева и выдержкиt , мин. Твердость после отпуска, Н RС Структура

 

Содержание отчета

1. Название и цель работы.

2. Краткие сведения о превращениях при нагреве в закаленной углеродистой стали.

3. Таблица с данными по режимам отпуска, твердости и структуре исследуемых сталей до и после отпуска.

4. Графики изменения твердости закаленной стали в зависимости от температуры отпуска.

5. Выводы по работе.

 

Контрольные вопросы

1. Что такое термическая операция «отпуск»?

2. После какого вида термической обработки производится отпуск?

3. С какой целью проводится отпуск?

4. К каким видам изделий применяется низкотемпературный отпуск?

5. К каким видам изделий применяется среднетемпературный отпуск?

6. К каким видам изделий применяется высокотемпературный отпуск?

7. Какие процессы протекают при отпуске до 200 °С?

8. Какие процессы протекают при отпуске до 400 °С?

9. Какие процессы протекают при отпуске до 600°С?

10. Что представляет собой структура мартенсит отпуска?

11. Что такое троостит отпуска?

12. Что такое сорбит отпуска?

13. В каком температурном интервале отпуска наиболее интенсивно протекают процессы сфероидизации и коагуляции цементита?

14. С каким процессом при отпуске связано уменьшение напряжений в стали?

15. Как изменяются свойства закаленной стали при повышении температуры отпуска?

16. Какой основной процесс происходит при отпуске?

17. Чем отличается сорбит отпуска от троостита отпуска?

18. Какая структура образуется при отпуске до 200 °С?

19. Какая структура образуется при отпуске до 400 °С?

20. Какая структура образуется при отпуске до 600 °С?

21. Как изменяется прочность стали sв при отпуске до 600 °С?

22. Как изменяется предел текучести s0,2 при отпуске до 400 °С?

23. Как изменяются характеристики пластичности d и Y при отпуске до температуры 600 °С?

24. Какую операцию необходимо выполнить, если при отпуске получены более низкие твердость HRC и прочность sв, чем требовалось?

25. Какую операцию необходимо выполнить, если при отпуске получили более высокие твердость HRC и прочность sв, чем требовалось?

26. Какую температуру отпуска выбрать для изделий, от которых требуются высокие упругие свойства?

27. Какую температуру отпуска надо выбрать для изделий, от которых требуются высокие твердость и износостойкость?

28. Что произойдет в структуре стали, если после отпуска при 600 °С произвести дополнительный отпуск при 200 °С?

 

ЛАБОРАТОРНАЯ РАБОТА № 10

 

ТЕРМИЧЕСКАЯ ОБРАБОТКА АЛЮМИНИЕВЫХ СПЛАВОВ

 

Цель работы

 

1. Изучить возможности упрочнения алюминиевых сплавов термической обработкой.

2. Изучить закономерности изменения структуры и механических свойств дуралюмина при термической обработке.

3. Ознакомиться с технологией термической обработки алюминиевых сплавов.

 

Материалы и оборудование для выполнения работы

 

1. Образцы из дуралюмина марки Д16.

2. Прибор измерения твердости по методу Бринелля ТШ-2.

3. Нагревательные печи.

4. Бачок с водой.

 

Порядок выполнения работы

1. Изучить необходимый теоретический материал по теме занятия. Ознакомиться с механизмом упрочнения алюминиевых сплавов термической обработкой, с изменениями их структуры при закалке и старении.

2. Измерить твердость дуралюмина по Бринеллю в исходном (отожженном) состоянии.

3. Провести закалку образцов сплава и замерить твердость после нее.

4. Провести искусственное старение закаленного сплава при температурах 100, 200 и 300°С с выдержкой при этих температурах в течение 20 минут, кроме этого провести старение сплавов при температуре 200°С с выдержками 5 и 10 минут.

5. Измерить твердость образцов после старения.

6. По результатам измерений построить графические зависимости твердости от температуры и продолжительности старения.

7. Проанализировать и объяснить полученные результаты.

 

Основные положения

 

Термическая обработка алюминиевых сплавов в зависимости от производственной ситуации и эксплуатационных условий работы детали может преследовать различные цели:

1) Повышение пластичности и снижение твердости с целью улучшения обрабатываемости резанием и давлением. (Это реализуется при проведении смягчающей термической обработки – отжига.)

2) Повышение сопротивления деформации с целью повышения твердости и прочности. (Такая задача решается проведением упрочняющей термической обработки – закалкой и старением.)

Поскольку указанные изменения свойств алюминиевых сплавов связаны с изменением их структуры, рассмотрим особенности ее формирования при различных видах термической обработки. С этой целью необходимо использовать диаграмму состояния, соответствующую данным сплавам.

 

Дуралюмин представляет собой сплав алюминия с медью и магнием (а также с небольшим количеством марганца и кремния), поэтому рассмотрим диаграмму состояния сплавов системы алюминий-медь (рис. 1). Это диаграмма с ограниченной растворимостью компонентов в твердом состоянии.

 

Рис. 1

 

В соответствии с приведенной диаграммой, при температурах выше линии ABC, называемой линией ликвидус, сплавы находятся в жидком состоянии; ниже этой линии протекают процессы кристаллизации.

Растворимость меди в алюминии достигает 5,7 % при 548 °С.

С понижением температуры растворимость меди быстро уменьшается до значений ≤ 0,2 % при 20 °С. В области, ограниченной линиями ADE0A, существует твердый раствор меди в алюминии(условное обозначение – α). В области правее линий CKM существует химическое соединение СuAl2. В области, ограниченной линиями ABDA, формируются из жидкости кристаллы твердого раствора меди в алюминии α, а в области, ограниченной линиями BCKB, – кристаллы химического соединения СuAl2. Оставшаяся часть жидкости при понижении температуры до 548 °С изменяется по составу и при достижении эвтектического состава (33 % меди) кристаллизуется в виде эвтектики. Эта эвтектика представляет собой механическую смесь кристаллов твердого раствора α и СuAl2. Соединение СuАl2 также может изменяться по составу, о чем свидетельствует форма области в правой части диаграммы (ограниченная слева линиями СКМ).

Линия DE на диаграмме показывает предельную растворимость меди в твердом растворе α в зависимости от температуры. С понижением температуры растворимость меди уменьшается с 5,7 % (точка D при 548 °С) до ≤0,2 %
(точка Е при 20 °С). Поэтому при охлаждении доэвтектических сплавов ниже линий ED и DB из твердого раствора α выделяются избыточные атомы меди с образованием частиц СuАl2.

Широкое применение в технике получили деформируемые алюминиевые сплавы – дуралюмины. Это сплавы с содержанием 3-5 % меди в алюминии.

 

В равновесном (отожженном) состоянии согласно диаграмме (рис. 1) структура дуралюмина состоит из зерен твердого раствора меди в алюминии α и частиц соединения СuАl2 (рис. 2). При этом частицы СuАl2 крупные. Такая структура обеспечивает сплаву хорошую пластичность (d = 18-20 %) при относительно невысоких значениях прочности (sв = 200-220 МПа) и твердости.

 

                          Рис. 2                                    Рис. 3

 

Если сплав алюминия с 4 % меди со структурой, показанной на рис. 2, нагреть до температур выше линии DE, но ниже AD, то при этом частицы СuАl2 диссоциируют и растворяются в твердом растворе α. Когда этот процесс завершится, структура станет однофазной (рис. 3), и вся медь (в данном случае 4 %) будет находиться в твердом растворе. Если затем сплав быстро охладить, то медь не успеет выделиться из твердого раствора и сохранится в нем после охлаждения. В результате такой обработки сформируется твердый раствор α¢, сильно пересыщенный медью, так как согласно диаграмме состояния при комнатной температуре в этом растворе может содержаться не более 0,2 % меди. В данном случае после обработки в твердом растворе α¢ содержится 4 % меди.

Такой процесс получения пересыщенного твердого раствора α¢ путем нагрева сплава до температур выше линии DE на диаграмме (в однофазную область), выдержки и последующего быстрого охлаждения называется закалкой. В результате закалки формируется твердый раствор замещения, и упрочнение происходит, в основном, за счет искажений кристаллической решетки, обусловленных разными размерами атомов алюминия и меди. Торможение дислокаций за счет этих искажений невелико. Поэтому после закалки значительного упрочнения дуралюмина не происходит – его прочность составляет sВ = 250-270 МПа, однако пластичность возрастает до d = 20-24 %, что позволяет пластически деформировать сплав в этом состоянии.

Для более эффективного упрочнения алюминиевых сплавов их необходимо после закалки подвергать старению – длительной выдержке (от 4 до 6 суток) при комнатной температуре или более короткой выдержке (несколько часов или несколько десятков минут в зависимости от марки сплава) при повышенной температуре (100-180 °С). В первом случае старение называют естественным, а во втором – искусственным.

В процессе старения происходят следующие изменения в структуре закаленного сплава. Поскольку пересыщенный твердый раствор α¢ в закаленном сплаве – структура неравновесная и неустойчивая, при последующей выдержке сплава в течение определенного времени (при комнатной или повышенной температурах) в этом твердом растворе происходит диффузионное перераспределение атомов меди. В результате в отдельных участках сплава образуются обогащенные медью зоны. Постепенно в этих зонах при возрастании концентрации меди формируются дисперсные (очень мелкие) частицы химического соединения с кристаллической решеткой, отличной от гранецентрированной решетки твердого раствора α. На последней стадии этого процесса в дуралюмине формируется соединение, имеющее формулу типа СuАl2. Размер обогащенных медью зон на начальной стадии старения составляет: толщина 5-10 Å, диаметр 40-100 Å. Затем они растут до толщин 40 Å и диаметра ≥ 300 Å.

Формирование в структуре сплава зон с высокой концентрацией меди и дисперсных частиц химического соединения СuАl2 является сильным препятствием для движения дислокаций при пластической деформации и приводит к значительному упрочнению материала (sВ = 400-650 МПа), при незначительном снижении пластичности (d = 10-18 %).

При увеличении температуры и продолжительности искусственного старения дисперсные частицы начинают интенсивно коагулировать и укрупняться. При этом расстояние между ними увеличивается, что облегчает прохождение дислокаций между частицами и приводит к снижению прочности сплава. Поэтому для каждого сплава необходимо выбирать оптимальный режим старения, который должен обеспечивать сохранение в структуре дисперсной упрочняющей фазы СuАl2. Такой механизм упрочнения характерен для всех алюминиевых сплавов, а тип образующегося химического соединения зависит от состава конкретного сплава.

 



2019-12-29 220 Обсуждений (0)
Методические  указания  по  выполнению  работы 0.00 из 5.00 0 оценок









Обсуждение в статье: Методические  указания  по  выполнению  работы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (220)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)