Основные задачи генетики
Введение
"Из-за врожденных дефектов наша цивилизованная человеческая порода гораздо слабее, чем у животных любого другого вида - как диких, так и одомашненных... Если бы на усовершенствование человеческой расы мы потратили двадцатую часть тех сил и средств, что тратятся на улучшение породы лошадей и скота, какую вселенную гениальности могли бы мы сотворить!". Фрэнсис Гальтон (английский психолог и антрополог).
Генетика - одна из немногих фундаментальных биологических наук, которая с самого своего зарождения была точной. История ее развития - это история все более и более точных методов и результатов. По способности управлять своими объектами и конструировать их генетика становится все более похожей на физику, математику и инженерно-технические дисциплины. Многочисленные хромосомные и генные карты, записи генетических текстов, схемы строения, работы и эволюции генов и управляемых ими систем и процессов получены точными методами и сами не менее точны, чем алгоритмы и технические чертежи. И поэтому, на первый взгляд, ее профессиональный язык - лексика, стилистика и визуальные формы представления данных - далеки от красоты живой природы, открывающейся натуралистам, художникам и поэтам. Сочетание точности и логической строгости анализа с творческим предвидением структур и функций незримых объектов - задолго до их визуализации - характерно для работ великих генетиков - Г. Менделя, А. Вейсмана, Т. Моргана, Ф. Лежена, Дж. Уотсона и Ф. Крика, Ф. Жакоба и К. Моно и многих других. Вся история генетики - своеобразный "путь вглубь генетических систем", причем "путь впотьмах", на котором нередко исследователи работали "умственными взорами": в скудном свете новых - порою, весьма фрагментарных - фактов они создавали гипотетические схемы и описания тех структур и процессов, которые удавалось опровергать или доказывать экспериментальными данными лишь многие годы спустя. Мера и число для генетического мышления необходимы, но не достаточны: "провидческие" построения сложных пространственных и временных картин требуют от исследователей и логики, и творческого воображения - качества, присущего художникам, писателям и поэтам. Именно это качество запечатлено в лексике и стиле наиболее новаторских трудов генетиков: основа четкости понятий заключается в неожиданности словосочетаний. В профессиональных текстах генетиков, словно в своеобразном магическом кристалле, непроизвольно отображались, фокусировались и сменялись не только рациональные пути развития самой генетики, но и "модные" веяния в различных областях точных, естественных и гуманитарных наук, а также в житейской практике. Предпринимаемая попытка может оказаться интересной не только для логиков, методологов и философов различных областей науки, лингвистов, филологов и психологов, но и для самих генетиков.
Что изучает генетика. Генетика (от греч. γενητως — происходящий от кого-то) — наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие; в зависимости от используемых методов других дисциплин — молекулярную генетику, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии. Первоначально генетика изучала общие законы наследственности и изменчивости на основании фенотипических данных. Понимание механизмов наследственности, то есть роли генов как элементарных носителей наследственной информации, хромосомная теория наследственности и т. д. стало возможным с применением к проблеме наследственности методов цитологии, молекулярной биологии и других смежных дисциплин. Основы современной генетики заложены Г. Менделем, открывшим законы дискретной наследственности (1865), и школой Т. Х. Моргана, обосновавшей хромосомную теорию наследственности (1910-е гг.). В СССР в 1920-1930-х годах выдающийся вклад в генетику внесли работы Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, А. С. Серебровского и др. Законы Г.Менделя Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготы — Аа), а значит, и по фенотипу. Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодоминировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% — фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расщепления по фенотипу в соответствии со вторым законом Менделя. Закон независимого комбинирования (наследования) признаков, или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определенном соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два — новые. Этот закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом (рис. 2). Например, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот — закономерному расщеплению по генотипу и соответственно по фенотипу.
Основные задачи генетики Генетические исследования преследуют цели двоякого рода: познание закономерностей наследственности и изменчивости и изыскание путей практического использования этих закономерностей. То и другое тесно связано: решение практических задач основывается на заключениях, полученных при изучении фундаментальных генетических проблем, и в то же время доставляет фактические данные, важные для расширения и углубления теоретических представлений. От поколения к поколению передается (хотя иногда и в несколько искаженном виде) информация обо всех многообразных морфологических, физиологических и биохимических признаках, которые должны реализоваться у потомков. Исходя из такого кибернетического характера генетических процессов, удобно сформулировать четыре основные теоретические проблемы, исследуемые генетикой: - Во-первых, проблема хранения генетической информации. Изучается, в каких материальных структурах клетки заключена генетическая информация и как она там закодирована - Во-вторых, проблема передачи генетической информации. Изучаются механизмы и закономерности передачи генетической информации от клетки к клетке и от поколения к поколению. - В-третьих, проблема реализации генетической информации. Изучается, как генетическая информация воплощается в конкретных признаках развивающегося организма, взаимодействуя при этом с влияниями окружающей среды, в той или иной мере изменяющей эти признаки, подчас значительно. - В-четвертых, проблема изменения генетической информации. Изучаются типы, причины и механизмы этих изменений. Заключения, полученные при изучении фундаментальных проблем наследственности и изменчивости, служат основой решения стоящих перед генетикой прикладных задач. Достижения генетики используются для выбора типов скрещиваний, наилучшим образом влияющих на генотипическую структуру (расщепление) у потомков, для выбора наиболее эффективных способов отбора, для регуляции развития наследственных признаков, управления мутационным процессом, направленного изменения генома организма с помощью генетической инженерии и сайт-специфичного мутагенеза. Знание того, как разные способы отбора влияют на генотипическую структуру исходной популяции (породу, сорт), позволяет использовать те приемы отбора, которые наиболее быстро изменят эту структуру в желаемую сторону. Понимание путей реализации генетической информации в ходе онтогенеза и влияния, оказываемого на эти процессы окружающей средой, помогают подбирать условия, способствующие наиболее полному проявлению у данного организма ценных признаков и «подавлению» нежелательных. Это имеет важное значение для повышения продуктивности домашних животных, культурных растений и промышленных микроорганизмов, а также для медицины, так как позволяет предупреждать проявление ряда наследственных болезней человека. Исследование физических и химических мутагенов и механизма их действия делает возможным искусственно получать множество наследственно измененных форм, что способствует созданию улучшенных штаммов полезных микроорганизмов и сортов культурных растений. Познание закономерностей мутационного процесса необходимо для разработки мер по защите генома человека и животных от повреждений физическими (гл. обр. радиацией) и химическими мутагенами. Успех любых генетических исследований определяется не только знанием общих законов наследственности и изменчивости, но и знанием частной генетики организмов, с которыми ведется работа. Хотя основные законы генетики универсальны, они имеют у разных организмов и особенности, обусловленные различиями, например, в биологии размножения и строении генетического аппарата. Кроме того, для практических целей необходимо знать, какие гены участвуют в определении признаков данного организма. Поэтому изучение генетики конкретных признаков организма представляет собой обязательный элемент прикладных исследований.
Селекция Селекция — наука о методах создания и улучшения пород животных, сортов растений, штаммов микроорганизмов. Селекцией называют также отрасль сельского хозяйства, занимающуюся выведением новых сортов и гибридов сельскохозяйственных культур и пород животных. По Н. И. Вавилову, селекция — это эволюция, направляемая волей человека. Для успешной селекционной работы учитывают: 1) исходное сортовое и видовое разнообразие растений и животных — объектов селекционной работы, 2) мутации и роль среды в проявлении и развитии изучаемых признаков, 3) закономерности наследования при гибридизации, 4) формы искусственного отбора (массовый и индивидуальный). Селекция высокопродуктивных форм живых организмов является самым эффективным и наиболее экономически выгодным способом повышения продуктивности сельского хозяйства. Доказано, что вклад селекции в повышение в два раза урожайности основных сельскохозяйственных культур, достигнутое за последнюю четверть века в развитых странах, составляет около 50%. Так называемую «зеленую революцию» в земледелии Мексики, Индии и ряда других стран совершило внедрение низкорослых (с высотой стебля 100—110 см), полукарликовых (80—100 см) и карликовых (60—80 см) сортов риса, пшеницы и др. Они характеризуются нетолько высокой устойчивостью к полеганию, но и высокой продуктивностью колоса, главным образом за счет повышенного количества в нем зерновок.
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (277)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |