Мегаобучалка Главная | О нас | Обратная связь


Экспертизы в судебном процессе



2020-02-03 167 Обсуждений (0)
Экспертизы в судебном процессе 0.00 из 5.00 0 оценок




Введение

 

Часто во время разного рода экспериментов необходимо применение той или иной формы лазерного излучения для того, чтобы досконально исследовать тот или иной параметр того или иного процесса. Исследования всегда несут в себе некоторую опасность, которую желательно избежать для того, чтобы как можно тщательней подготовиться к проведению тех или иных мероприятий связанных с применением запрещённых технологий лазерного излучения. Осуществляя подобные мероприятия, следует быть постоянно на чеку, так как любая ошибка или несоответствие технологическому процессу позволит сделать всё на самом высочайшем уровне.

Чтобы не наделать ошибок в проведении подобных экспериментов и экспертиз необходимо со всей тщательностью подходить к такому понятию как ядерная несовместимость. Лазерное излучение всё чаще и чаще начинает применяться в довольно-таки непредсказуемых отраслях науки. Это буквально двадцать лет назад сильно удивило бы учёных, занимающихся подобной проблематикой. Оно часто используется в медицине для излечения, казалось бы, неизлечимых хворей и болезней. Всё это благодаря новейшему оборудованию, которое позволяет на высочайшем профессиональном уровне применить тот или иной сюжет в собственной мелодраматической картине, используя при этом, лазерные излучения.

Они будут как раз, кстати, в случае если учесть всю несовместимость и несоизмеримость того или иного препарата и если он может выполнить все выше указанные действия, значит, он сможет сделать на высочайшем уровне всё то, что необходимо для срочного излечения пациента, болеющего сложной разновидностью рака или другой опасной болезни. Лазерные излучения всё же ещё не до конца изучены и исследованы, потому что они могут на полном серьёзе сделать всё возможное и невозможное для того. Чтобы исправить все ошибки минувших дней и лет и выполнить любого вида оплошности и огрехи, которые, казалось бы, были неисполнимо утрачены для большинства населения нашей планеты.

Лазерные излучения также могут нести очень целебные свойства, в том или оном виде влияя на состояние здоровья пациента. Чем пациент хуже себя чувствует, тем в срочнейшем плане необходимо использование тех или иных параметров и характеристик, так как это очень положительно влияет на всякого рода опухоли и камни в мочевом пузыре. Обрабатывая эти болезни лазерным излучением, вы можете справиться со всякого рода болезнями, и сделать на как можно более высоком уровне все вышеуказанные и прочитанные инструкции по применению оборудования, которые повсеместно используется для генерации лазерного излучения и дальнейшего направления его на проблемные органы человеческого организма. Эта процедура в кратчайшие сроки сможет выполнить все заявленные и выполненные процедуры и деяния, несмотря на все ужасы войны, вы можете легко выполнить всё то, что будет выполнено.

Со временем, постоянно используя приборы и устройства, которые являются источниками разного рода лазерных излучений, вы сможете в кратчайшие сроки приобрести не заменимый опыт подобного взаимодействия и на высоком профессиональном уровне выполнить ту или иную противоречивую информацию. Потому как это поможет вам возвращать здоровье просто-таки огромнейшему количеству людей, который буквально очень маленький промежуток времени назад с трудом могли выполнить все заверенные действия на высоком профессиональном уровне, используя при этом лазерные излучения как инструмент лечения страшных и фактически неизлечимых заболеваний.

Подытоживая всё выше сказанное, можно сделать довольно-таки парадоксальный вывод о столь большой важности такого понятия как лазерное излучение. Без него в современной медицине и информационной технике просто-таки не обойтись. Люди, которые хорошо умеют пользоваться лазерными приборами на современном рынке труда всегда смогут найти себе работу по вкусу и желанию. Они не будут волноваться о том, что их могут внезапно уволить, а буду со спокойствие и счастьем смотреть в будущее. Лазерное излучение в современной электронике занимает незаменимое место. Сложно представить простой электронный прибор без использования лазерных технологий.


Экспертизы в судебном процессе

 

Первичная – впервые проводимая экспертиза, если на досудебном этапе вещественные и иные доказательства экспертному исследованию не подвергались.

Дополнительная – экспертиза, которую назначают в случаях недостаточной ясности или неполноты заключения эксперта, к производству может быть привлечен новый эксперт, а может быть поручено тому же эксперту.

Повторная экспертиза назначается в случае наличия сомнений в правильности или обоснованности экспертного заключения, в случае существования противоречий между несколькими экспертными заключениями, суд вправе назначить повторную экспертизу, производство которой поручается другому эксперту или группе экспертов.

Комплексная экспертиза назначается судом, если для установления обстоятельств, имеющих значения для данного дела, в случае, когда необходимо одновременное проведение исследований с использованием различных областей знания или использованием различных научных направлений в пределах одной области знания, поручается нескольким экспертам, которые впоследствии формулируют общий вывод на основании проведенных исследований, если есть специалисты, не согласные с общими выводами, то они подписывают только свою исследовательскую часть заключения.

Комиссионная экспертиза отличается от комплексной тем, что эксперты, проводящие исследования, являются специалистами в одной и той же области знаний, по результатам проведенных исследований, они совещаются и формулируют общее заключение.

Дактилоскопия

Дактилоскопия (от греч. δάκτυλος – палец и σκοπέω – смотрю, наблюдаю) – метод идентификации человека по отпечаткам пальцев (в том числе по следам пальцев рук), основанный на уникальности рисунка кожи. Широко применяется в криминалистике. Основан на идеях англичанина Уильяма Гершеля, выдвинувшего в 1877 году гипотезу о неизменности папиллярного рисунка ладонных поверхностей кожи человека. Эта гипотеза стала результатом долгих исследований автора, служившего полицейским чиновником в Индии.

Следы пальцев рук могут быть также выявлены различными способами:

- закопчиванием, суть которого сводится к тому, что на поверхность со следами наносят тонкий слой копоти, полученной при сжигании таких веществ, как камфара, нафталин, пенопласт и другие. Следоноситель помещают в верхнюю часть пламени и передвигают либо его, либо источник пламени в различных направлениях до тех пор, пока след не покроется копотью.

Данный способ используется для того, чтобы выявить слабовидимые следы рук на полированных поверхностях, когда применение порошков невозможно;

- способ приложения. Он заключается в том, что копировальную бумагу прикладывают к той части следоносителя, где предположительно имеются следы пальцев рук. Этот способ результативен для выявления потожировых следов рук на бумаге.

- способ радиографии, когда облучают следоноситель при помощи нейтронов. В результате такие элементы потожирового вещества, как натрий, фосфор, калий становятся радиоактивными. Затем на предмет со следами накладывают фотографическую пластинку. При этом эмульсия фотопластинки засвечивается именно в тех местах, где расположены следы. Потом в результате проявления пластинки выявляются следы рук;

- с помощью ультрафиолетовых и инфракрасных лучей. Этот способ используется после обработки следов определёнными веществами (салициловый натрий в смеси с крахмалом, сульфидом цинка и другими), которые флюрисцируют под воздействием указанных лучей.

Целесообразно их использовать для выявления потожировых следов на объектах с многоцветной поверхностью или следов рук с большим сроком давности.

В настоящее время, кроме перечисленных способов, используется также термовакумное напыление для того, чтобы выявить следы пальцев рук большой давности. Тогда предмет следоноситель помещают в специальный прибор вместе с металлическим порошком, который нагревается до испарения в условиях глубокого вакуума (10–4 – 10–5 атмосфер). Благодаря тому, что атомы порошка в разной степени воздействуют на данный предмет и на следообразующее вещество, следы становятся видимыми.

На стадии эксперимента находится способ выявления следов рук с помощью лазера. Он сводится к тому, что облучают предмет, на котором расположены следы рук при помощи светового потока оргонного лазера непрерывного действия. В результате возникает желто-зелёного цвета люминесценция имеющихся следов пальцев рук.

В основном люминесцирует жир из компонентов следообразующего вещества, Но не исключено, что это происходит и с другими компонентами вещества указанных следов в определённых условиях – при использовании лазера с более широким диапазоном полос возбуждения и заданной комбинации фильтров.

Козиэл Т. в своём докладе на симпозиуме криминалистики в Варшаве в 1986 году, освещая вопрос об использовании лазерной техники в криминалистических исследованиях, отмечал: «Вместе с прогрессом науки и техники возрастает роль и значение технических средств, используемых в повседневной борьбе с преступностью. К таким средствам, наряду с электроникой и компьютеризацией, следует отнести лазерную технику. В будущем применение лазера может обеспечить не только визуализацию следов на месте происшествия, но и немедленную идентификацию в центральном массиве данных с помощью автоматизированной на базе ЭВМ системы «.

Лазерная техника открывает огромные возможности в сфере обнаружения следов папиллярных линий на различных поверхностях. Сначала исследования направили на обнаружение следов папиллярных линий с помощью лазера на таких трудных поверхностях, как бумага, полотно, кожеподобные предметы.

По данному вопросу, на этом симпозиуме Баниук К. указал: «Занимаясь поиском эффективных методов обнаружения следов папилярных линий на тканях, кожных материалах и аналогичных основаниях, мы возлагаем большие надежды на лазерную технику.»

Процесс обнаружения следов папиллярных линий по словам Т. Козиэла, следующий: «Визуализацию следов проводили методом возбуждения флюрисценции светом от аргонового лазера мощностью 2 Вт. В качестве рассеивающей линзы для лазерного пучка использовали фотообъектив. Результаты фиксировали фотографическим способом.

Схема экспериментальной установки для выявления следов папиллярных линий:

L-аргонный лазер; S – рассеивающая линза; P – объект с нанесённым следом папиллярных линий; F – фильтр, пропускающий флюрисцентное излучение; AR – устройство, регулирующее картину флюрисцеции.

Прежде чем подвергнуть субстрат лазерному облучению, на него наносили: розамин, раствор хлорида НДВ, эфир нианакриловой кислоты, раствор нингидрида и хлорида цинка, которые вступая в реакцию с потожировым веществом, испускают флюрисценцию.

В результате этих экспериментов хорошие результаты получены в случае следов папиллярных линий, находящихся на бумаге и кожеподобных матереалах «.

После проведения экспериментов Т. Козиэл пришел к выводу о том, что в большинстве случаев при помощи лазера удалось выявить следы папиллярных линий, которые либо не проявлялись, либо проявлялись, но не достаточно с помощью традиционных методов выявления следов, а также следы большой давности до 10 лет.

Преимущества лазера состоят в том, что с его помощью можно выявить и фиксировав следы пальцев рук, которые подвергались чрезвычайно высоким и низким температурам и даже пропитывались влагой; лазер не портит исследуемой поверхности, поэтому после его применения можно повторно использовать другие методы.

В последнее время также стали применять голографическую технику при выявлении и фиксации следов. Она открывает огромные возможности проявления и закрепления следов. С её помощью можно зафиксировать полное трехмерное изображение объектов с довольно большой разрешающей и информационной ёмкостью. Голографическая техника позволяет обнаружить невидимые и не поддающиеся выявлению другими методами следы.

Если не даёт эффекта обработка физическими методами, то прибегают к химическим методам выявления следов. Они основаны на способности некоторых компонентов потожирового вещества вступать в цветные реакции с определенными химическими реактивами. Важно иметь в виду, что такие реактивы, используемые в криминалистической практике, способны выявить только отпечатки, оставленные пальцами, на коже которых имеется достаточное количество пота. При помощи химических методов нередко удаётся выявить и старые следы. Применение химических методов оправданно главным образом в тех случаях, когда требуется выявить старые следы, особенно на предметах из впитывающих материалов – бумаге, картоне и др.

TRACER

Специально для целей криминалистики и судебной экспертизы был разработан портативный лазер TracER™, позволяющий эффективно находить отпечатки пальцев и прочие органические компоненты. Эта полностью портативная система на основе зеленого лазера особенно эффективна при поиске слабовыраженных отпечатков и позволяет поднять борьбу с преступностью на новый уровень, существенно повысив эффективность работы следователей и судебных экспертов.

Равномерная интенсивная засветка

Высокая чувствительность

Эргономичный многофункциональный излучатель с режимом увеличения

Работа от батарей

Лазерная химия

Лазерная химия – раздел физической химии, изучающий химические процессы, которые возникают под действием лазерного излучения и в которых специфические свойства лазерного излучения играют решающую роль. Монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы других видов остаются невозбужденными. Селективность возбуждения при этом процессе ограничена лишь степенью перекрывания полос в спектре поглощения вещества. Таким образом, подбирая частоту возбуждения, удается не только осуществлять избирательную активацию молекул, но и менять глубину проникновения излучения в зону реакции. лазер

Возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определенную область объёма, занимаемого реагирующей смесью. лазерное воздействие на химические реакции может быть тепловым и фотохимическим. лазерная офтальмология и микрохирургия, в конечном счете, та же лазерная химия, но для медицинских целей.

Широкое использование лазеров в химии началось в конце 60-х годов, когда в руках исследователей появились перестраиваемые по частоте лазеры, которые обеспечили возможность селективного возбуждения любых атомов и молекул. Количество публикаций, посвященных применению лазеров в химии, стало расти лавинообразно.

Одним из первых, кто предложил инициировать химические реакции путем воздействия лазерного излучения на атомы и молекулы, был зав. кафедрой квантовой электроники физического факультета МГУ им. М.В. Ломоносова, профессор Рем Викторович Хохлов.

На химическом факультете МГУ работы по применению лазеров в химии были начаты в 70-е годы. Работы проводились на кафедрах: неорганической химии (лазерное инициирование твердофазных реакций, лазерная термохимия), физической химии (взаимодействие мощного лазерного излучения с веществом в твердой и жидкой фазе; изучение кинетики гомогенных реакций с использованием лазерного нагрева; использование лазеров для изучения реакций в молекулярных пучках, лазерно-химические реакции адсорбированных молекул), химической кинетики (структура и свойства лазерных красителей), аналитической химии (высокочувствительный лазерный атомно-ионизационный метод анализа), органической химии (превращение органических молекул под действием лазерного излучения).

В 70-е годы в лаборатории кинетики и газовой электрохимии кафедры физической химии проводились совместные с физическим факультетом МГУ научные исследования по проблеме создания активных сред для накачки лазеров на основе химических реакций с участием молекул озона. С 1976 г. по 1991 г. на химическом факультете работал всесоюзный научный семинар «Лазеры в химии».

В 1988 г. была создана кафедра лазерной химии. Первым заведующим кафедры был избран профессор Ю.Я. Кузяков.

Лазерная химия изучает химические процессы, возникающие или существенно изменяющие свой характер под действием лазерного излучения.

Излучение лазера, в отличие от излучения всех нелазерных источников света, может иметь огромную мощность (10 19 Вт/см2) и высокую степень монохроматичности (экспериментально получено отношение ширины линии лазерного излучения к длине волны, равное 10 –14).

Монохроматичность лазерного излучения позволяет добиться высокой селективности возбуждения не только определенных атомов или молекул, находящихся в смеси с другими атомами и молекулами, но и высокой селективности возбуждения определенных химических связей в молекуле. Возбужденные атомы, молекулы, химические связи значительно легче вступают в химические реакции, чем невозбужденные, определяя тем самым основные процессы, происходящие в реакционной смеси.

Высокая интенсивность излучения позволяет возбудить значительное число молекул вещества, находящегося в облучаемом объеме. Под воздействием излучения высокой интенсивности могут происходить многофотонные процессы, в результате которых каждая молекула одновременно поглощает не один, а несколько (2,….5….10…и т.д.) фотонов. Этот процесс может привести к образованию молекулы, энергия возбуждения которой превышает энергию ее диссоциации.

Казалось бы, что лазерное излучение является идеальным средством для проведения селективных химических реакций и использование лазерного излучения может осуществить вековую мечту химиков – возможность управлять химической реакцией. Первые теоретические оценки (60–70-е годы) возможностей лазеров для управления химическими реакциями были более чем оптимистическими. Однако зксперименты, выполненные в последующие годы, показали, что наши знания о структуре энергетических уровней в молекулах и динамике энергии возбуждения требуют существенного уточнения.

Селективное возбуждение определенной химической связи наиболее эффективно может быть осуществлено лазерным излучением инфракрасного (ИК) диапазона длин волн. Поглощение молекулой ИК квантов определенной длины волны приводит к возбуждению колебаний атомов, образующих определенную связь. Увеличение энергии молекулы (например, в результате многофотонного поглощения) сопровождается увеличением амплитуды колебания атомов. При использовании мощных лазеров как энергия молекулы, так и амплитуда колебаний атомов возбуждаемой связи может быть настолько большой, что связь разорвется. Однако было установлено, что для успешного проведения химических реакций, селективных по возбуждаемой связи в молекуле, решающее значение имеет соотношение между временем, необходимым для завершения реакции, и временем, за которое молекула теряет селективность возбуждения.

Концентрации энергии на одной связи при ее возбуждении мощным лазерным излучением препятствует быстрый процесс внутримолекулярного перераспределения энергии возбуждения. Энергия, первоначально сосредоточенная на одной связи, оказывается равномерно распределенной среди всех других связей в молекуле за время 10 –9 – 10 –12 с. Поэтому для проведения реакций, селективных по связям, необходимо подобрать такие скорости возбуждения и скорости реакций, которые были бы больше скорости внутримолекулярного перераспределения энергии возбуждения связи. Это условие трудновыполнимо при современном уровне развития техники эксперимента. Тем не менее, в некоторых случаях эти трудности были преодолены и удалось осуществить реакции, селективные по возбуждаемым связям. Например, взаимодействие лазерного излучения с молекулой HDO приводит к образованию водорода, если частота (n1) излучения совпадает с частотой колебания атомов O-H. Взаимодействие лазерного излучения с молекулой HDO приводит к образованию дейтерия, если частота (n2) излучения совпадает с частотой колебания атомов O-D. Можно предложить следующие механизмы реакций:

 

H-O-D + h n1 [H……O-D]  H2 + D2O

H-O-D + h n2 [D……O-H]  D2 + H2O.


Если возбужденные лазером молекулы вступают в реакции после завершения процесса внутримолекулярного перераспределения энергии, то они, сохраняя колебательное возбуждение, легче вступают в химические реакции, чем другие молекулы, находящиеся в смеси с ними. Таким образом, оказывается возможным, используя лазерное излучение, создавать ансамбль колебательно-возбужденных молекул и проводить химические реакции, селективные по возбуждаемым лазером молекулам. Наиболее яркими примерами таких реакций являются реакции, используемые для разделения изотопов, когда в смеси изотопных молекул селективно возбуждают молекулы, содержащие определенный изотоп. Возбужденные молекулы вступают в реакции (реакции с межмолекулярной селективностью) со специально подобранными реагентами. В результате реакции образуются легко выделяемые из реакционной смеси, обогащенные по выбранному изотопу продукты. В настоящее время почти все современные технологические процессы разделения изотопов основаны на лазеро-химических реакциях с межмолекулярной селективностью.

Использование лазерного излучения нашло широкое применение в современной химии. Наряду с синтезом новых соединений была существенно улучшена технология получения известных соединений. Оказалось возможным а) использование более выгодного исходного материала, б) получение целевого продукта более высокого качества (например, за счет снижения количества побочных продуктов), в) уменьшение числа стадий получения целевого продукта, г) проведение сверхглубокой химической очистки исходных материалов (например, при получении материалов для микроэлектроники). Лазерные методы исследования позволили детектировать единичные атомы и молекулы, дистанционно определять следы химических соединений, исследовать сверхтонкую структуру спектров молекул и т.д.

В настоящее время на кафедре 23 сотрудника (3 доктора, 6 кандидатов наук); в составе кафедры имеется три лаборатории:

1. Лаборатория лазерного синтеза (зав. лабораторией – доцент Ф.Н. Путилин). Научные исследования посвящены изучению процессов взаимодействия мощного лазерного излучения с веществом в твердой и жидкой фазе. С целью получения новых органических веществ исследуются механизмы лазерноиндуцированных реакций (2+2) циклоприсоединения. Синтезируются новые материалы с заданными свойствами при осаждении на различных подложках продуктов испарения исходных веществ эксимерными лазерами.

2. Лаборатория лазерной диагностики (зав. лабораторией – профессор Н.Б. Зоров). Предложен, теоретически обоснован и реализован на практике новый лазерный сверхчувствительный ионизационный метод анализа состава веществ. Метод основан на селективном возбуждении атомов, а также молекул, в состав которых входит определяемый элемент, с последующей ионизацией возбужденных молекул и детектированием образующихся ионов. Были достигнуты пределы обнаружения некоторых элементов, равные нескольким пикограмм содержания в 1 мл водного раствора. Развиваются методы лазерного высокочувствительного детектирования в жидкостной хроматографии. Проводятся работы по лазерному синтезу новых твердых углеродсодержащих материалов.

3. Лаборатория лазерной спектроскопии (зав. лабораторией – профессор Ю.Я. Кузяков). Для двухатомных молекул и их ионов создан банк данных радиационных характеристик. Данные банка позволяют рассчитывать, в широком диапазоне длин волн, мощности поглощения и испускания низкотемпературной плазмой, высоконагретых газов, звезд и межзвездной среды и т.п. Созданы модели описания знергетической структуры возбужденных молекул, учитывающие результаты экспериментальных исследований не только энергетических, но и радиационных и магнитных характеристик. Создание таких моделей оказалось возможным благодаря наличию прецизионных данных, полученных в результате применения лазерных источников света. Разработан новый лазерный внутрирезонаторный метод получения спектров свободных радикалов, основанный на помещении источника свободных радикалов в резонатор многомодового широкополосного лазера.

В последние годы во всем мире бурно развивается новый раздел лазерной химии: фемтохимия, т.е. химия при воздействии на молекулы лазерных импульсов фемтосекундной (10 –15 с) длительности. Одним из наиболее впечатляющих достижений фемтохимии является наблюдение спектров активных комплексов (переходного состояния), существование которых (в интервале времен 10 –11 – 10 –12 с) постулируется в любой кинетической теории химических реакций. В планах развития исследований на кафедре найдет отражение и это перспективное направление.



2020-02-03 167 Обсуждений (0)
Экспертизы в судебном процессе 0.00 из 5.00 0 оценок









Обсуждение в статье: Экспертизы в судебном процессе

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (167)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)