Мегаобучалка Главная | О нас | Обратная связь


Моделирование. Имитационное моделирование



2020-02-03 164 Обсуждений (0)
Моделирование. Имитационное моделирование 0.00 из 5.00 0 оценок




СОДЕРЖАНИЕ

 

 

Введение............................................................................................................................ 3

1. Теоретические основы имитационного моделирования.......................................... 4

    1.1. Моделирование. Имитационное моделирование.......................................... 4

    1.2. Метод Монте-Карло.......................................................................................... 9

    1.3. Использование законов распределения случайных величин....................... 12

             1.3.1. Равномерное распределение................................................................ 12

             1.3.2. Дискретное распределение (общий случай)....................................... 13

             1.3.3. Нормальное распределение.................................................................. 14

             1.3.4. Экспоненциальное распределение...................................................... 15

             1.3.5. Обобщенное распределение Эрланга................................................. 16

             1.3.6. Треугольное распределение................................................................. 17

    1.4. Планирование имитационного компьютерного эксперимента................... 18

             1.4.1. Кибернетический подход к организации экспериментальных исследований сложных объектов и процессов....................................................................................................... 18

             1.4.2. Регрессионный анализ и управление модельным экспериментом. 19

             1.4.3. Ортогональное планирование второго порядка................................ 20

2. Практическая работа..................................................................................................... 22

3. Выводы по бизнес-модели «Эффективность производства»................................... 26

Заключение........................................................................................................................ 31

Список используемой литературы.................................................................................. 32

ПРИЛОЖЕНИЕ А............................................................................................................ 33

ПРИЛОЖЕНИЕ Б............................................................................................................. 34

ПРИЛОЖЕНИЕ В............................................................................................................. 35

ПРИЛОЖЕНИЕ Г............................................................................................................. 36

ПРИЛОЖЕНИЕ Д............................................................................................................. 37

ПРИЛОЖЕНИЕ Е............................................................................................................. 38


ВВЕДЕНИЕ

 

Моделирование в экономике начали применять еще задолго до того, как экономика окончательно оформилась как самостоятельная научная дисциплина. Математические модели использовались еще Ф. Кенэ (1758 г. Экономическая таблица ), А. Смитом (классическая макроэкономическая модель), Д. Рикардо (модель международной торговли). В XIX веке большой вклад в моделирование внесла математическая школа (Л. Вальрас, О. Курно, В Парето, Ф. Эджворт и др.). В XX веке методы математического моделирования экономики применялись очень широко и с их использованием связаны выдающиеся работы лауреатов нобелевской премии по экономике (Д. Хикс, Р. Солоу, В. Леонтьев, П. Самуэльсон).

Курсовая работа по предмету «Имитационное моделирование экономических процессов» является самостоятельной учебно-исследовательской работой.

Целью написания данной курсовой работы является закрепление теоретических и практических знаний. Освещение подходов и способов применения имитационного моделирования в проектной экономической деятельности.

Главная задача – исследовать с помощью имитационного моделирования эффективность хозяйственной деятельности предприятия.

 

 


ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

 

 

Моделирование. Имитационное моделирование

 

В процессе управления различными процессами постоянно возникает необходимость прогнозирования результатов в тех или иных условиях. Для ускорения принятия решения о выборе оптимального варианта управления и экономии средств на эксперимент используется моделирование процессов.

Моделированием является перенос свойств одной системы, которая называется объектом моделирования, на другую систему, которая называется модель объекта, воздействие на модель осуществляется с целью определения свойств объекта по характеру ее поведения.

Такую замену (перенос) свойств объекта приходится делать в тех случаях, когда непосредственное его изучение затруднено или даже невозможно. Как показывает практика моделирования, замена объекта его моделью дает часто положительные эффект.

Модель является представлением объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель какого-либо объекта может быть или точной копией этого объекта (хотя и выполненной из другого материала и в другом масштабе), или отображать некоторые характерные свойства объекта в абстрактной форме.

Одновременно в процессе моделирования удается получить достоверную информацию об объекте с меньшими затратами времени, финансов, средств и других ресурсов.

Основными целями моделирования являются:

1) анализ и определение свойств объектов по модели;

2) проектирование новых систем и решение на модели оптимизационных задач (нахождение наилучшего варианта);

3) управление сложными объектами и процессами;

4) прогнозирование поведения объекта в будущем.

Наиболее распространены следующие виды моделирования:

1) математическое;

2) физическое;

3) имитационное.

При математическом моделировании исследуемый объект заменяется соответствующими математическими соотношениями, формулами, выражениями, с помощью которых решаются те или иные аналитические задачи (делается анализ), находятся оптимальные решения, а также делаются прогнозы.

Физические модели представляют собой реальные системы той же природы, что и исследуемый объект, либо иной. Наиболее типичным вариантом физического моделирования является использование макетов, установок или выбор фрагментов объекта для проведения ограниченных экспериментов. И наиболее широко оно нашло применение в сфере естественных наук, иногда в экономике.

Для сложных систем, к числу которых относятся экономические, социальные, информационные и другие социально-информационные системы, нашло широкое применение имитационное моделирование. Это распространенная разновидность аналогового моделирования, реализуемого с помощью набора математических инструментальных средств специальных имитирующих компьютерных программ и технологий программирования, позволяющих посредством процессов-аналогов провести целенаправленное исследование структуры и функций реального сложного процесса в памяти компьютера в режиме «имитации», выполнить оптимизацию некоторых его параметров.

Для получения необходимой информации или результатов необходимо осуществлять “прогон” имитационных моделей, а не “решать” их. Имитационные модели не способны формировать свое собственное решение в том виде, в каком это имеет место в аналитических моделях, а могут лишь служить в качестве средства для анализа поведения системы в условиях, которые определяются экспериментатором.

Следовательно, имитационное моделирование – не теория, а методология решения проблем. Более того, имитационное моделирование является только одним из нескольких имеющихся в распоряжении системного аналитика важнейших методов решения проблем. Поскольку необходимо приспосабливать средство или метод к решению задачи, а не наоборот, то возникает естественный вопрос: в каких случаях имитационное моделирование полезно?

Необходимость решения задач путем экспериментирования становится очевидной, когда возникает потребность получить о системе специфическую информацию, которую нельзя найти в известных источниках. Непосредственное экспериментирование на реальной системе устраняет много затруднений, если необходимо обеспечить соответствие между моделью и реальными условиями; однако недостатки такого экспериментирования иногда весьма значительны:

1) может нарушить установленный порядок работы фирмы;

2) если составной частью системы являются люди, то на результаты экспериментов может повлиять так называемый хауторнский эффект, проявляющийся в том, что люди, чувствуя, что за ними наблюдают, могут изменить свое поведение;

3) может оказаться сложным поддержание одних и тех же рабочих условий при каждом повторении эксперимента или в течение всего времени проведения серии экспериментов;

4) для получения одной и той же величины выборки (и, следовательно, статистической значимости результатов экспериментирования) могут потребоваться чрезмерные затраты времени и средств;

5) при экспериментировании с реальными системами может оказаться невозможным исследование множества альтернативных вариантов.

По этим причинам исследователь должен рассмотреть целесообразность применения имитационного моделирования при наличии любого из следующих условий:

1. Не существует законченной математической постановки данной задачи, либо еще не разработаны аналитические методы решения сформулированной математической модели. К этой категории относятся многие модели массового обслуживания, связанные с рассмотрением очередей.

2. Аналитические методы имеются, но математические процедуры столь сложны и трудоемки, что имитационное моделирование дает более простой способ решения задачи.

3. Аналитические решения существуют, но их реализация невозможна вследствие недостаточной математической подготовки имеющегося персонала. В этом случае следует сопоставить затраты на проектирование, испытания и работу на имитационной модели с затратами, связанными с приглашением специалистов со стороны.

4. Кроме оценки определенных параметров, желательно осуществить на имитационной модели наблюдение за ходом процесса в течение определенного периода.

5. Имитационное моделирование может оказаться единственной возможностью вследствие трудностей постановки экспериментов и наблюдений явлений в реальных условиях (напримером, изучение поведения космических кораблей в условиях межпланетных полетов).

6. Для долговременного действия систем или процессов может понадобиться сжатие временной шкалы. Имитационное моделирование дает возможность полностью контролировать время изучаемого процесса, поскольку явление может быть замедлено или ускорено по желанию (например, исследования проблем упадка городов).

Дополнительным преимуществом имитационного моделирования можно считать широчайшие возможности его применения в сфере образования и профессиональной подготовки. Разработка и использование имитационной модели позволяет экспериментатору видеть и испытывать на модели реальные процессы и ситуации. Это в свою очередь должно в значительной мере помочь понять и прочувствовать проблему, что стимулирует процесс поиска нововведений.

Имитационное моделирование реализуется посредством набора математических инструментальных средств, специальных компьютерных программ и приемов, позволяющих с помощью компьютера провести целенаправленное моделирование в режиме «имитации» структуры и функций сложного процесса и оптимизацию некоторых его параметров. Набор программных средств и приемов моделирования определяет специфику системы моделирования – специального программного обеспечения.

Имитационное моделирование экономических процессов обычно применяется в двух случаях:

1. для управления сложным бизнес-процессом, когда имитационная модель управляемого экономического объекта используется в качестве инструментального средства в контуре адаптивной системы управления, создаваемой на основе информационных технологий;

2. при проведении экспериментов с дискретно-непрерывными моделями сложных экономических объектов для получения и «наблюдения» их динамики в экстренных ситуациях, связанных с рисками, натурное моделирование которых нежелательно или невозможно.

Имитационное моделирование как особая информационная технология состоит из следующих основных этапов:

1. Структурный анализ процессов. На этом этапе производится анализ структуры сложного реального процесса и разложение его на более простые взаимосвязанные подпроцессы, каждый из которых выполняет определенную функцию. Выявленные подпроцессы могут подразделяться на другие более простые подпроцессы. Таким образом, структуру моделируемого процесса можно представить в виде графа, имеющего иерархическую структуру.

Структурный анализ особенно эффективен при моделировании экономических процессов, где многие составляющие подпроцессы протекают визуально и не имеют физической сущности.

2. Формализованное описание модели. Полученное графическое изображение имитационной модели, функции, выполняемые каждым подпроцессом, условия взаимодействия всех подпроцессов должны быть описаны на специальном языке для последующей трансляции.

Это можно сделать различными способами: описать вручную на каком-либо конкретном языке либо с помощью компьютерного графического конструктора.

3. Построение модели. Этот этап включает в себя трансляцию и редактирование связей, а также верификацию параметров.

4. Проведение экстремального эксперимента. На этом этапе пользователь может получить информацию о том, насколько близка созданная модель реально существующему явлению, и насколько пригодна данная модель для исследования новых, еще не опробованных значений аргументов и параметров системы.


Метод Монте-Карло

 

Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг., когда они ввели для него название «Монте-Карло» и применили его к решению некоторых задач экранирования ядерных излучений. Этот математический метод был известен и ранее, но свое второе рождение нашел в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым обозначением «Монте-Карло». Применение метода оказалось настолько успешным, что он получил распространение и в других областях, в частности в экономике.

Поэтому многим специалистам термин «метод Монте-Карло» иногда представляется синонимом термина «имитационное моделирование», что в общем случае неверно. Имитационное моделирование - это более широкое понятие, и метод Монте-Карло является важным, но далеко не единственным методическим компонентом имитационного моделирования.

Согласно методу Монте-Карло проектировщик может моделировать работу тысячи сложных систем, управляющих тысячами разновидностей подобных процессов, и исследовать поведение всей группы, обрабатывая статистические данные. Другой способ применения этого метода заключается в том, чтобы моделировать поведение системы управления на очень большом промежутке модельного времени (несколько лет), причем астрономическое время выполнения моделирующей программы на компьютере может составить доли секунды.

При проведении анализа по методу Монте-Карло компьютер использует процедуру генерации псевдослучайных чисел для имитации данных из изучаемой генеральной совокупности. Процедура анализа по методу Монте-Карло строит выборки из генеральной совокупности в соответствии с указаниями пользователя, а затем производит следующие действия: имитирует случайную выборку из генеральной совокупности, проводит анализ выборки и сохраняет результаты. После большого числа повторений, сохраненные результаты хорошо имитируют реальное распределение выборочной статистики.

В различных задачах, встречающихся при создании сложных систем, могут использоваться величины, значения которых определяются случайным образом. Примерами таких величин являются:

1 случайные моменты времени, в которые поступают заказы на фирму;

2 загрузка производственных участков или служб объекта экономики;

3 внешние воздействия (требования или изменения законов, платежи по штрафам и др.);

4 оплата банковских кредитов;

5 поступление средств от заказчиков;

6 ошибки измерений.

В качестве соответствующих им переменных могут использоваться число, совокупность чисел, вектор или функция. Одной из разновидностей метода Монте-Карло при численном решении задач, включающих случайные переменные, является метод статистических испытаний, который заключается в моделировании случайных событий.

Метод Монте-Карло основан на статистических испытаниях и по природе своей является экстремальным, может применяться для решения полностью детерминированных задач, таких, как обращение матриц, решение дифференциальных уравнений в частных производных, отыскание экстремумов и численное интегрирование. При вычислениях методом Монте-Карло статистические результаты получаются путем повторяющихся испытаний. Вероятность того, что эти результаты отличаются от истинных не более чем на заданную величину, есть функция количества испытаний.

В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения. При практических вычислениях эти числа берут из таблиц или получают путем некоторых операций, результатами которых являются псевдослучайные числа с теми же свойствами, что и числа, получаемые путем случайной выборки. Имеется большое число вычислительных алгоритмов, которые позволяют получить длинные последовательности псевдослучайных чисел.

Один из наиболее простых и эффективных вычислительных методов получения последовательности равномерно распределенных случайных чисел ri, с помощью, например, калькулятора или любого другого устройства, работающего в десятичной системе счисления, включает только одну операцию умножения.

Метод заключается в следующем: если ri=0,0040353607, то ri+1 ={40353607ri} mod 1, где mod 1 означает операцию извлечения из результата только дробной части после десятичной точки. Как описано в различных литературных источниках, числа riначинают повторяться после цикла из 50 миллионов чисел, так что r5oooooo1=r1. Последовательность r1получается равномерно распределенной на интервале (0, 1).

Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. В связи с этим необходимо не только наблюдать развитие процесса в нежелательных направлениях, но и оценивать гипотезы о параметрах нежелательных ситуаций, к которым приведет такое развитие, в том числе и параметрах рисков.




2020-02-03 164 Обсуждений (0)
Моделирование. Имитационное моделирование 0.00 из 5.00 0 оценок









Обсуждение в статье: Моделирование. Имитационное моделирование

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (164)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)