Мегаобучалка Главная | О нас | Обратная связь


Фазовый состав портландцементного клинкера



2020-02-03 250 Обсуждений (0)
Фазовый состав портландцементного клинкера 0.00 из 5.00 0 оценок




При рассмотрении фазового состава клинкера следует учитывать условия его формирования. При обжиге сырьевой шихты содержащиеся в ней примеси и зола топлива распределяются неравномерно, что обусловливает переменный состав образующихся клинкерных фаз. Для них характерно образование твердых растворов, способных размещать в своих кристаллических решетках вовлеченные примесные атомы при условиях компенсации их зарядов. Компонентами твердых растворов являются щелочи, оксиды магния, хрома, титана, фосфора и др. В процессе обжига происходит стабилизация моноклинного алита. Наибольшей способностью к вовлечению примесных атомов в решетках обладают алюминаты и алюмоферриты кальция; белиты (6%) и алиты (около 4,8%).
Признано называть клинкерные фазы по названию исходных минералов — фаза алита, фаза белита. Алит — фаза трехкальциевого силиката C3S. Одним из наиболее важных в химии цемента соединений извести с кремнеземом является трехкальциевый силикат C3S. Он устойчив в интервале температур от 1523 до 2343 К, при которых расплавляется с разложением (инконгруентно), на СаО и расплав; он может образовываться путем первичной кристаллизации из трех- или четырехкомпонентного расплава, содержащего алюминий и железо. В этом случае не удается получить чистые кристаллы C3S, ибо в их твердом растворе содержится небольшое количество алюминатов и ферритов кальция. С. М. Рояк и О. К. Алешина наблюдали образование C3S при 1273—1473 К в зоне твердофазовых реакций в виде слоя толщиной около 1 мкм вокруг зерен СаО и в количестве менее 1% массы материала. Этот слой служит затравкой для основной массы алита, кристаллизующейся в жидкой фазе при 1723 К. Известен способ получения C3S из извести и кремнекислоты в расплаве хлористого кальция; после охлаждения расплав обрабатывается спиртом и водяным паром при 873 К. C3S может образовываться путем твердофазовой реакции между кремнекислотой и известью при температурах 1723 — 1873 К; при 2073 К — реакция протекает с большей скоростью. Однако для осуществления этой реакции необходим многократный обжиг тонко измельченного промежуточного продукта. Только при этих условиях можно получить C3S, не содержащий свободной извести.
Структура алита сложена из тетраэдров (Si04) и отдельных ионов кислорода и кальция. Последние координированы между собой шестью кислородными ионами. Для этой структуры характерна нерегулярная координация ионов кальция и «пустот» между ними. Полагают, что такой координацией можно объяснить высокую энергию решетки трехкальциевого силиката. Алит в портландцементном клинкере рассматривали как трехкальциевый силикат, в котором два атома кремния замещены двумя атомами алюминия, а для компенсации заряда в промежутках располагается атом магния. Такое замещение происходит в каждых 18 молекулах C3S, что позволило предложить следующую формулу алита — C54Si6 AM. Предлагают также рассматривать формулу алита в виде C51Si6 AM. Однако получить синтетический алит этого состава не удалось, продукт обжига содержал обычно некоторое количество свободного оксида кальция. Это дало основание считать, что растворимость глинозема значительно меньше, чем полагали ранее.
Белит — фаза двухкальциевого силиката (C2S) существует в четырех модификациях. При исследовании путем травления некоторыми реактивами полированных шлифов портландцементного клинкера в отраженном свете заметно как светлое, так и темное призматическое промежуточное вещество. Обе эти составляющие различаются по отражательной способности. Светлое промежуточное вещество, обладающее наибольшей отражательной способностью, представлено алюмоферритами кальция с высокими показателями преломления, а также сильно обогащенным железом стеклом. Темное призматическое промежуточное вещество с меньшей отражательной способностью представляет собой трехкальциевый алюминат и клинкерное стекло, которое из-за быстрого охлаждения не успело закристаллизоваться. Промежуточное вещество отчетливо проступает при протравливании поверхности полированного шлифа в течение 1 с при 20°С специальным раствором серной кислоты в этиловом спирте. При помощи других реактивов можно различить в нем железосодержащие фазы, включая обогащенное железом стекло, трехкальциевый алюминат и др.
Алюмоферриты кальция. Кристаллы алюмоферритов кальция характеризуются призматической, либо округлой формой, они от желтовато-бурого до темно-бурого или даже черного цвета. Раньше считали, что химический состав алюмоферритпой фазы клинкера, названной по имени исследователя браунмиллеритом, C4AF.
Трехкальциевый алюминат — темное промежуточное вещество, появляющееся в присутствии щелочей в призматической форме, а если их нет — в прямоугольной. Несмотря на наличие травителей определение содержания трехкальциевого алюмината в клинкере связано с трудностями. О. М. Астреева и Л. Я. Лопатникова разработали количественный иммерсионный метод определения С3А в клинкере с помощью прокрашивания. Особо тонко измельченный порошок клинкера прокрашивается специальным спиртовым раствором органического красителя «кислотного ярко-голубого». В результате интенсивно окрашиваются только кристаллы С3А, что дает возможность определить их содержание.
Трехкальциевый алюминат неустойчив. Он образует Ci2A7 в условиях обжига цементного клинкера при содержании в составе сырьевой смеси минерализатора — фтористого кальция, либо кремнефтористого натрия, кальция или магния, а также в присутствии минерализатора— сернокислого кальция. Кристаллическая структура С3А еще точно не определена. Предполагают, что в С3А ионы Аl+3 в центрах боковых сторон элементарного куба окружены в правильном порядке шестью ионами кислорода. Другие ионы Аl3+ в центрах граней охватывают плоское кольцо из четырех ионов кислорода. В структуре имеются два вида ионов Са2+: одни, расположенные в углах куба, правильно координированы шестью атомами кислорода, а другие, сгруппированные в небольшой куб внутри структуры, неправильно координированы девятью атомами кислорода. Для структуры в целом характерно наличие примесей в пустотах кристаллических решеток, имеющих размер около 1,7А. В промышленных клинкерах MgO содержится до 2,5% по массе, С3А растворяет до 9% Na2O; наблюдается также способность к растворению незначительных количеств Si02. Для С3А характерно отсутствие полиморфизма.
Пятикальциевый трехалюминат. Это соединение в портландцементном клинкере в виде отдельной фазы не кристаллизуется. Оно растворяется в стекловидной фазе либо входит в состав алюмоферритов кальция. Установлено существование метастабильной фазы, которая присутствует в клинкере, полученном при исключительно быстром обжиге.
Стекловидная фаза. При резком мгновенном охлаждении (замораживании) жидкой фазы клинкера теоретически возможное содержание стекла может достичь примерно 25%; практически же стекловидной фазы в клинкере значительно меньше, потому что в реальных условиях она охлаждается со средней скоростью. Стекловидная фаза образуется в результате неравновесных условий кристаллизации клинкерного расплава при охлаждении.
Присутствие стекловидной фазы можно установить, сопоставив теплоту растворения исследуемого клинкера с аналогичной характеристикой полностью закристаллизованного (отожженного) клинкера, а также под микроскопом при исследовании в иммерсионных жидкостях. Обломки стекла в одном и том же образце клинкера могут иметь различное светопреломление. Это объясняется микроскопической гетерогенностью структуры и неспособностью жидкой фазы достигнуть во время охлаждения равновесия с крупными кристаллами затвердевших фаз.
В полированных шлифах отражательная способность также меняется в зависимости от значения глиноземного модуля. Для того, чтобы отличить стекло от кристаллического темного промежуточного вещества, рекомендуется протравливать поверхность шлифа клинкера раствором едкого калия. Резкое охлаждение клинкера, способствующее образованию стекловидной фазы, создает вместе с тем в ней внутренние напряжения, что является причиной рассыпания клинкера в процессе последующего хранения, однако оно благоприятствует сохранению прочности цемента при его вылеживании. Прочие составляющие клинкера. Свободный (несвязанный) оксид кальция практически всегда содержится в клинкерах в количестве, обычно не превышающем 0,75—1%. Это свидетельствует о неполноте реакций образования силикатов кальция. Свободный оксид кальция в клинкере представлен в виде скоплений или отдельных округлых зерен, часто примерно одинакового с белитом размера; его трудно обнаружить в прозрачном шлифе клинкера, но он хорошо виден в полированном шлифе, так как благодаря округлой форме заметно выделяется на поверхности шлифа. Содержание свободного оксида кальция может быть определено глицератным методом; он очень легко обнаруживается при образовании хорошо видимых фенолятов кальция. Количество оксида магния частично в виде периклаза в клинкере составляет 1—4% в зависимости от его содержания в исходных сырьевых материалах, главным образом в известняковом компоненте. Теоретическая температура диссоциации углекислого магния при давлении 0,1 МПа составляет 913 К. Оксид магния в зависимости от температуры его получения имеет различную плотность. При обжиге при 1673 К и выше получается неактивная MgO, называемая периклазом, ее плотность 3,58 г/см3; низкотемпературный оксид магния (каустический) имеет плотность 3,3 г/см3. Количество кристаллического оксида магния в клинкере всегда меньше расчетного его содержания, так как MgO распределена в цементном клинкере в виде твердого раствора и входит в состав алюмоферритов кальция\ алита, белита, стекловидной фазы, а также нередко и V трехкальциевый алюминат. Остающийся несвязанным оксид магния является периклазом, содержание которого зависит от количества и состава жидкой фазы, режима обжига и скорости охлаждения клинкера. Размер кристаллов периклаза в быстро охлажденных клинкерах со значительным содержанием стекловидной фазы меньше, чем в тех же клинкерах, но медленно охлажденных, т. е. близких к равновесной кристаллизации. Объясняется это тем, что растворимость оксида магния в стекле больше, чем в кристаллических алюмоферритах. В полированных шлифах клинкера обычно применяемые травители на периклаз не действуют, он отчетливо наблюдается в виде светлых угловатых зерен, возвышающихся над поверхностью. Обычно зерна имеют вид прямоугольников или треугольников.
Щелочи. Содержание щелочей в Клинкере составляет обычно 0,3—1 % и в отдельных случаях достигает 1,5%; количество щелочей зависит от их содержания в исходных сырьевых материалах, а также от условий возгонки в процессе обжига. Подача в печь уловленной электрофильтрами пыли приводит к повышению содержания щелочей в клинкере. Обычно в пыли преобладает оксид калия, оксида натрия содержится, как правило, меньше.
Систематические исследования клинкерных систем, содержащих наряду с основными компонентами щелочные оксиды, показали, что эти оксиды прежде всего связывают серный ангидрид. При этом образуются щелочные сульфаты; возможно появление щелочно-сульфатной фазы, содержащей оба щелочные оксида.
Весьма существенно влияют щелочи на образование трехкальциевого силиката. Обычно при заметном количестве калия наблюдается избыток свободного оксида кальция.
Оксиды марганца присутствуют в клинкере, если в качестве сырьевого компонента используют доменный шлак, содержащий обычно соединения марганца. Содержание Мп203 может достигнуть 3%; в этом случае цемент будет коричневым. Установлено, что Мп203 может замещать в клинкере Fe203. Исследования В. В. Тимашева показали благоприятное действие Мп на спекание клинкера. Клинкер из сырьевой смеси, в составе которой есть соединения марганца, нужно обжигать в окислительной среде.
Диоксид титана переходит в клинкер обычно из глинистого компонента; содержание его составляет около 1%.
Пентаксид фосфора (фосфорный ангидрид) содержится в клинкере, полученном из обычного цементного сырья в весьма незначительных количествах (порядка 0,2—0,3%), которые ускоряют процесс твердения портландцемента. Опыт работы некоторых цементных заводов показал, что при попадании в состав сырьевой смеси оксидов фосфора резко понижалась прочность цемента. Часто было трудно установить причину существенного снижения гидравлической активности, так как при обычном химическом анализе оксид фосфора осаждается с полуторными оксидами и тем самым меняет химическую характеристику состава клинкера. Однако при более детальном анализе удавалось обнаружить заметное (около 2%) количество Р205 в клинкере.
Было выявлено, что алит, вторично обожженный в присутствии фосфата кальция, разлагается на двухкальциевый силикат, в твердом растворе которого содержится фосфат кальция и свободный оксид кальция.
Сернистые соединения обычно содержатся в глинистом компоненте цементной сырьевой шихты и, особенно, в том случае, если сырьевым компонентом является доменный шлак. Количество серы в пересчете на серный ангидрид (S03) не превышает обычно 0,75— 1%. В исходном сырье сера встречается как пирит, реже в виде сульфатов или органических соединений. Она может поступать в обжигаемую шихту с твердым топливом, либо сернистым мазутом. В процессе обжига, который, как правило, всегда является окислительным, сульфиды окисляются и вступают в реакцию со щелочами, образуя сульфаты щелочей и некоторое количество сульфата кальция. При высоких температурах Сульфат кальция может разлагаться, однако появляющийся серный ангидрид взаимодействует с обжигаемой высокоизвестковой шихтой и вновь образует сульфаты. Поэтому в отходящих газах вращающихся печей количество серного ангидрида обычно незначительно; в улавливаемой из отходящих газов пыли содержатся, как правило, сернокислые соединения. Таким образом, в цементном клинкере имеется алит, основой которого является C3S; двухкальциевый силикат — основа белита; трехкальциевый алюминат и четырехкальциевый алюмоферрит, образующие промежуточное вещество и в том числе стекловидную фазу. Присутствуют диоксид титана в виде твердого раствора в трехкальциевом силикате; оксид магния в виде периклаза, а также в составе твердого раствора в алите, белите, алюмоферрите и трехкальциевом алюминате (кроме того, он входит в состав стекловидной фазы), серный ангидрид в виде сульфатов щелочных металлов, а также сернокислого кальция; щелочи в виде новообразований, являющихся продуктами взаимонесвязанный — не вступавший в реакцию, так называемый свободный оксид кальция; примеси фосфорного ангидрида в составе белита и, возможно, алита; оксиды марганца преимущественно в составе алюмоферритов; оксиды хрома в составе силикатов кальция; нерастворимый (в кислоте) остаток, содержащий преимущественно не вступавший в реакцию кремнезем; возможны примеси фтора и хлора.
Минералогический состав клинкеров для производства специальных портландцементов устанавливается в зависимости от профилирующих свойств, которыми должен обладать данный цемент. Для сравнительной оценки минералогического (фазового)состава клинкера были предложены эмпирические модули — силикатный и глиноземный. Одним из таких показателей является также коэффициент насыщения кремнезема известью. Для расчета сырьевой шихты на цементных заводах задаются значением КН, а также одного из модулей — силикатного либо глиноземного. КН определяют в зависимости от совокупности ряда факторов — физико-химических свойств сырья, условий его переработки и обжига клинкера и, главным образом, в зависимости от специального назначения портландцемента, который будет изготовлен ИЗ этого клинкера.
С повышением КН увеличивается при соответствующем обжиге содержание алита в клинкере. При высоком численном значении КН, в равной степени как и при высоком значении силикатного модуля, затруднен процесс обжига; чтобы обеспечить полноту реакции образования алита, необходима повышенная температура обжига. Практически удается этого достигнуть не всегда, в клинкере остается повышенное (>1%) содержание свободной извести, соответственно увеличивается количество белита. При высоком значении глиноземного модуля, при прочих одинаковых характеристиках сырьевой шихты, также затруднен процесс обжига клинкера из-за повышенной вязкости жидкой фазы, что замедляет формирование трехкальциевого силиката. Понижение силикатного, а также глиноземного модуля делает обжигаемый клинкер относительно легкоспекаемым и легкоплавким, что может затруднить обжиг. Могут образоваться свары, комья обжигаемого клинкера и настыли на футеровке в зоне спекания.
При расчете сырьевой шихты для производства специальных портландцементов обычно учитывают весь комплекс изложенных обстоятельств и пользуются следующей несколько упрощенной формулой КН, поскольку не всегда можно точно предусмотреть количество свободной извести, которое окажется в клинкере, а также содержание серного ангидрида (S03), так как частично он может улетучиваться с отходящими из печи газами.

 

Свойства цементов

Нормальная густота. В отличие от других строительных материаловцемент испытывают в гидратиро-ванном состоянии в виде теста либо песчаного раствора. Поэтому на результаты испытаний влияют не только физико-химическая характеристика вяжущего, но также содержание и особенности всех применяемых при испытании материалов: воды, песка, специальных добавок. Кроме того, большое значение имеют способы приготовления цементного теста либо раствора и условия, в которых протекают процессы твердения. Большое внимание необходимо уделять подбору количества воды для затворения цемента.
При испытании по ГОСТ определяют нормальную густоту цемента, измеряя глубину погружения стандартного пестика. Нормальная густота цементного теста характеризует количество воды затворения в % массы цемента и составляет для портландцемента примерно 22—28%. Она зависит от химико-минералогического состава клинкера, удельной поверхности цемента, содержания в нем допускаемой ГОСТ добавки трепела либо доменного шлака до 20% и некоторых других факторов. Сроки схватывания и равномерность изменения объема определяют в цементном тесте нормальной густоты.
Скорость схватывания. Портландцемент, затворенный количеством воды, установленным при определении его нормальной густоты, образует подвижное пластичное тесто, которое в зависимости от химико-минералогической характеристики клинкера, удельной поверхности и вещественного состава цемента постепенно в течение нескольких часов теряет подвижность, превращаясь в плотное тело.
Во время перемешивания теста контакты, возникшие между гидрат-ными новообразованиями коллоидных фракций цемента, нарушаются, и тесто сохраняет подвижность несмотря на постепенное нарастание связности. Чем дольше длится гидратация, тем больше становится гидратных новообразований и выше плотность структуры.
Время, в течение которого образуется непрерывно уплотняющаяся и коагуляционная структура, является периодом схватывания, т. е. формирования структуры. Таким образом, схватывание цемента следует рассматривать как первоначальную стадию общего процесса твердения. По ГОСТ начало схватывания должно наступать не ранее 45 мни н заканчиваться не позднее 12 ч с момента затворения. Нормальные сроки схватывания портландцемента достигаются при совместном помоле клинкера с добавкой подобранного количествагипса, при котором содержание S03 в цементе должно быть не меньше 1,5%и не выше 3,5%. При большей добавке гипса возможно ускорение схватывания.
Замедление схватывания цемента наступает вследствие того, что на поверхности цементных зерен откладываются тончайшие пленки геля гидросульфоалюмината кальция, быстро образующегося в результате взаимодействия сульфата кальция с трехкальциевым алюминатом. Эти гелевые пленки сдерживают диффузию воды к цементному зерну, что снижает скорость гидратации Вследствие исключительно высокой дисперсности образующегося геля гидросульфоалюмината кальция его трудно обнаружить под микроскопом. Замедлителями могут быть также полуводный гипс и безводный сульфат кальция (ангидрит); эффективность их действия связана с разной степенью растворимости. При использовании природного ангидрита образование в уже полностью затвердевшем цементе гидросульфоалюмината кальция вследствие запоздалой (медленной) растворимости ангидрита может привести к возникновению весьма опасных напряжений в цементном камне, так как увеличивается объем кристаллизующегося гидросульфоалюмината кальция. При избыточном содержании гипса также возможно появление опасных напряжений в хорошо затвердевшем цементе вследствие продолжающейся реакции образования гидросульфоалюмината кальция.
Большое значение при выборе добавки гипса имеет удельная поверхность и зерновой состав цемента, причем в цементы с повышенным содержанием щелочей следует вводить относительно больше добавки. У средне- и высокоалюминатных цементов несколько большая добавка гипса вызывает повышение прочности в первые дни твердения и уменьшение усадки и расширения. Характерно, что добавка гипса может даже ускорить схватывание низкоалюминатных, богатых алюмоферритами кальция цементов, причем в этом случае не наблюдается тенденция к повышению первоначальной прочности и к уменьшению объемных изменений. Оптимальная добавка гипса для каждого цемента может быть установлена только на основе данных экспериментальных помолов цементов в заводских помольных агрегатах с характерной для них системой аспирации, температурами измалываемого цемента, его гранулометрическим составом и др.
Ложное схватывание. Иногда происходит так называемое ложное схватывание цемента, характеризующееся тем, что цементное тесто схватывается преждевременно с большим выделением тепла. Однако при дальнейшем перемешивании тесто разжижается и схватывается уже нормально. Такое явление объясняют тем, что при помоле горячего клинкера, особенно в мельницах открытого цикла, температура цемента повышается иногда до 150°С и выше. Это вызывает дегидратацию гипса с образованием не только полугидрата, но и полностью обезвоженного сульфата кальция — ангидрита в растворимой форме. Быстрая гидратация ангидрита и полуводного гипса сопровождается преждевременным загустеванием цементного теста, которое при дальнейшем перемешивании разжижается.
Ложное схватывание цемента может вызвать быструю потерю пластичности бетонной смеси во время перемешивания либо перевозки к месту потребления. Его можно предупредить глубоким охлаждением клинкера, помолом его, преимущественно в сепараторных мельницах, либо охлаждением корпуса мельниц открытого цикла, сильной аспирацией, а также подачей распыленной водновоздушной смеси в последнюю камеру мельницы.
Испытание цемента на ложное схватывание заключается в видоизменении стандартного определения нормальной густоты цементного теста с повторением испытания через короткие интервалы — 3—5 мин с промежуточным перемешиванием. На скорость ложного схватывания бетонной смеси влияют температура, условия и время перемешивания, вид заполнителя и др. Возможна локализация явлений ложного схватывания цемента путем введения небольшой добавки СДБ, гипса либо минерального масла. Однако не у всех цементов даже при высокой температуре их измельчения наступает ложное схватывание. Полагают, что оно может быть вызвано наличием большого количества свободной извести либо недожога в измалываемой шихте клинкера. При затвореиии цемента с высокой удельной поверхностью часто образуются уплотненные комочки, которые при дальнейшем перемешивании распадаются. Замечено, что быстрое их схватывание вызывается переходом щелочей в карбонаты в результате взаимодействия с углекислотой при длительном хранении цемента на воздухе. В некоторых случаях оно носит характер ложного схватывания. Имеются данные о других (кроме гипса) видах замедлителей схватывания, их действие в большинстве случаев зависит от дозировки. Можно считать, что карбонаты, хлориды и нитраты являются ускорителями схватывания; сульфаты и фосфаты — замедлителями, за исключением сульфата глинозема, который действует как ускоритель. О влиянии добавок цветных металлов сведения разные. Их считали замедлителями схватывания, однако последние работы показали положительное влияние добавок небольших количеств цинка на твердение портландцемента. Б. Э. Юдович и Н. Т. Власова отмечают, что высокомарочные алитовыс цементы, не содержащие добавок, кроме гипса, могут характеризоваться аэрациопным ложным схватыванием. Оно вызвано образованием эттрингита в тонких слоях конденсата на дислокационной сетке поверхности частиц цемента.
Водоудерживающая способность. При затворении цемента водой как в лабораторных, так и промышленных условиях можно видеть, как некоторые цементы полностью удерживают воду в период схватывания, другие же отделяют небольшой слой разной толщины. Поскольку водоцементное отношение при приготовлении бетонной смеси обычно всегда превышает значение, установленное при определении нормальной густоты цементного теста, то водоотделение становится особо заметным. От него во многом зависит однородность бетона и прочность сцепления в нем цементного раствора с крупным заполнителем и стальной арматурой.
При послойной укладке бетона отделяющаяся из него вода скапливается на поверхности укладываемых слоев. В результате образуется контактная прослойка бетона с большим содержанием воды, что вызывает расслаивание бетона, нарушающее его монолитность, а это особенно нежелательно при укладке массивного бетона. Расслоение может идти и внутри бетона; образующаяся в результате водоотделения пленка воды может заметно понизить сцепление цементного раствора с крупным заполнителем и арматурой.
Испарение этой воды вызывает образование дополнительного количества пор, содействующих диффузии агрессивной воды в глубину бетона. Повышение водо-удерживающей способности достигается введением в исходный цемент активной минеральной добавки (в виде трепела, опоки), а также применением некоторых поверхностно-активных веществ. Дозировка и вид добавки должны быть предварительно определены экспериментальным путем. Водоотделение может оказаться полезным, например, при вакуумировании или применении водопоглощающей опалубки, при однослойном бетонировании небольших по сечению конструкций, при изготовлении железобетонных труб способом центрифугирования и в других случаях, когда необходимо снижение В/Ц и повышение плотности и прочности бетона.
Равномерность изменения объема — важное свойство цемента, которое определяется в соответствии с требованиями стандарта. Цементный камень при определенной влажности дает усадку либо несколько расширяется. Однако изменения объема камня весьма малы и заметно на равномерность изменения объема при стандартном испытании не влияют.
Расширение цементного камня, вызывающее искривление исследуемых образцов либо появление на них волосных трещин,-— результат запоздалой, но весьма сильной по своему действию гидратации химически не связанного свободного оксида кальция в клинкере. Такое расширение называют кажущимся, поскольку объем гашеной извести меньше суммы объемов исходных оксида кальция и воды, вступивших в реакцию.
Считают, что частицы образовавшейся гашеной извести растут преимущественно в одном направлении; при этом создаются напряжения, вызывающие расширение массы, которое теоретически составляет 95,5% объема исходного оксида кальция. Такое явление происходит при гидратации крупнозернистых кристаллов оксида кальция, требующей длительного взаимодействия с водой. Цементный камень расширяется также при избыточном содержании крупнокристаллических зерен пери-клаза (оксида магния), а также при большом количестве добавки гипса.
На заводах получают клинкер с минимально допустимым количеством свободного оксида кальция в цементе, содержание периклаза и гипса в котором обеспечивает равномерность изменения объема. Достигается это при помощи тонкого помола сырьевой шихты равномерного состава, качественного обжига и быстрого охлаждения клинкера.
Поскольку расширение цементного камня может проявиться в опасных размерах спустя много лет после за-творения цемента, стандартом предусмотрен ускоренный метод испытания цемента. По ГОСТ стандартно изготовленные лепешки цементного теста подвергаются через сутки после затворения кипячению в воде; после охлаждения они не должны иметь искривлений и даже волосных трещин. В ряде стран испытание ведут по методу Ле Шателье путем кипячения через сутки после затворения цилиндрика цементного теста, разрезанного по длине и снабженного двумя иглами, концы которых расходятся под действием напряжений, возникающих в результате расширения цементного камня. Допустимое расширение составляет 3—10 мм, причем максимальный его размер предусмотрен в большинстве стандартов. В ряде стран регламентирован автоклавный метод испытания образцов призм в течение 3 ч при давлении 2,1 МПа. В США допускается расширение портландцемента, равное 0,8%, в других странах — 0,5, 1 и даже 1,3%.
Тепловыделение. Гидратация цемента сопровождается выделением тепла, что может быть установлено по изменению температуры цементного теста, помещенного немедленно после его затворения в термос. В тонкостенных бетонных конструкциях это тепло сравнительно быстро рассеивается и заметно не влияет на структуру цементного камня.
Проблема тепловыделения привлекла внимание исследователей в связи с тем, что в массивном бетоне гидротехнических и других видов сооружений заметно повышается температура до значения, часто превышающего, примерно на 323К, температуру бетона при его укладке. Рост температуры вызывает напряжения, которые являются результатом неравномерного нагрева и охлаждения бетона; при малой его теплопроводности внутренние слои массива охлаждаются медленнее поверхностных. При возникновении больших термических напряжений в бетоне могут появиться трещины. Для устранения этих явлений применяют по возможности тощие бетонные смеси или укладывают в толщу массива трубы, по которым поступает вода для охлаждения бетона.
Клинкерные минералы при полной гидратации различаются по термохимическому эффекту, который для C2S состоит из тепла, выделяющегося как при химической реакции, так и при адсорбции воды гелем и составляет 504 кДж/кг. Тепловыделение при гидратации C3S равно 260 кДж/кг. Теплота гидратации для C4AF 420 кДж/кг й для С3А — 869 кДж/кг. Теплота образования гидросульфоалюминатов кальция составляет 558 кДж/кг безводного С3А. Теплота гидратации для СаО определена в 1170 кДж/кг и для MgO — 852 кДж/кг.
Изучение тепловыделения при гидратации портландцемента различного минералогического состава подтвердило, что наиболее термичнымн минералами в цементе являются C3S и С3А, причем C4AF замедляет тепловыделение других минералов. Основное количество тепла выделяется в первые 3—7 сут твердения. Примерное тепловыделение чистого, не содержащего добавок портландцемента для разной продолжительности твердения можно определить по разработанным в нашей стране коэффициентам, характеризующим долю участия клинкерных минералов в этом процессе.
Введение в портландцемент малых количеств активных минеральных добавок заметно не влияет на установленную зависимость.
Стандартную термохимическую характеристику цемента находят по ГОСТ при помощи термосного метода. Испытанию подвергают цементный раствор, в котором соотношение между цементом и песком устанавливается в зависимости от вида и марки цемента так, чтобы максимальное повышение температуры было бы близко к 288К. Расход цемента в единице объема раствора возрастает, если вместо портландцемента применяют пуццо-лановый и шлакопортландцемент.
С увеличением расхода цемента в 1 м3 бетона тепловыделение возрастает практически линейно. Повышение В/Ц приводит к заметному возрастанию теплового эффекта в случае применения алитового и алюминатного цементов. Зависимость тепловыделения от В/Ц у бетонов на белитовом цементе меньше. У бетонов с одинаковым расходом цемента и подвижностью изотермическое тепловыделение не зависит от свойств заполнителей, удельной теплоемкости и средней плотности материала зерен. Пластифицирующие и воздухововлекающие добавки по-разному влияют на тепловыделение. Введение ускорителей твердения приводит к увеличению тепловыделения. Набухание и усадка цемента. Набухание и усадка обусловлены способностью цементного камня и бетона изменять объем в зависимости от химических процессов, протекающих при твердении, и от влажности среды, в которой они находятся. Набухание сопровождается поглощением воды и увеличением массы цементного камня, достигающей 3—5% при продолжительности твердения 100 сут. Бетоны, находящиеся в воде, набухают меньше, чем цементный камень; через 6—12 мес. происходит стабилизация объемных изменений, хотя масса при этом продолжает увеличиваться. Набухание не вызывает снижения прочности, как это бывает при «запоздалой» гидратации СаОсвоб, периклаза, либо при взаимодействии щелочей цемента с реакционноспособным заполнителем бетона. Набухание цементного камня следует рассматривать как результат взаимодействия с водой, при котором образующийся цементный гель адсорбирует на своей чрезвычайно развитой поверхности воду, раздвигающую гидратиые новообразования. Поэтому при набухании внутренняя структура цементного камня уплотняется. Несомненно, что набухание вызывается также расклинивающим действием тонких пленок воды и осмотическими силами, возникающими в связи с разностью концентраций на поверхностях гидратированных частиц, и полу-проницаемостью, присущей цементному камню. Цементный камень и затвердевший бетон в воздушно-сухой среде дают усадку, сопровождающуюся потерей воды. Скорость усадки возрастает с уменьшением относительной влажности среды, а абсолютная величина усадки (мм/м) в несколько раз превышает набухание. Усадка наблюдается также при взаимодействии гидроксида кальция в цементном камне с углекислотой воздуха. Эта реакция протекает наиболее полно при определенной относительной влажности воздуха. Усадка бетона может привести к возникновению значительных напряжений, образованию микротрещин и макротрещин, нарушению монолитности конструкций и создать тем самым условия для активного действия других внешних агрессивных факторов. Нежелательна также усадка в предварительно напряженных конструкциях.
При вычислении потерь предварительного напряжения, а также в расчетах статически неопределимых систем нормативные значения деформаций усадки принимаются пока еще только в зависимости от марки бетона на сжатие без учета вида применяемого портландцемента, а также от жесткости или подвижности бетонной смеси.
Прочность цемента — одна из наиболее важных его физико-механических характеристик, от которой в основном и зависит прочность бетона в различных условиях твердения. Прочностные показатели цемента определяют, испытывая затвердевшие образцы из песчаного раствора в установленные сроки твердения. При этих испытаниях мы уже имеем дело с продуктом химического взаимодействия с водой, протекающего при гидратации цемента, поэтому на получаемые прочностные показатели цементного раствора, его физические характеристики оказывают влияние условия, при которых происходят эти химические процессы.
В стандартах на методы испытаний цемента строго регламентируются водоцементное отношение, условия приготовления, уплотнения и твердения испытуемых образцов, сроки их испытания, состав раствора, вид применяемого песка, размеры образцов. Стандартные методики каждой страны имеют свои отличительные особенности, поэтому невозможно точно сопоставить прочностные показатели цементов, получаемые в разных странах. Такое сопоставление возможно лишь в том случае, когда по разным стандартным методикам испытывается один и тот же образец цемента.
Для алита и алитовых портландцементов характерна близость коэффициент



2020-02-03 250 Обсуждений (0)
Фазовый состав портландцементного клинкера 0.00 из 5.00 0 оценок









Обсуждение в статье: Фазовый состав портландцементного клинкера

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (250)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)