Расчет теплоемкости органических веществ
Теплоемкость
Теплоемкость есть свойство вещества, характеризующее отношение количества тепла, сообщенного этому веществу, к вызванному им изменению температуры. Согласно более строгому определению, теплоемкость - термодинамическая величина, определяемая выражением
где Знание теплоемкости необходимо для выполнения самых разнообразных расчетов, например, при расчете тепловых балансов, при проектировании всевозможной теплообменной аппаратуры и реакторов, при расчете химического равновесия и пр. Знание температурной зависимости теплоемкости необходимо при определении энтропии вещества, изучение теплоемкости вещества несет важную информацию о строении его молекул и пр. При практических расчетах используются следующие понятия: · средняя теплоемкость - это отношение конечных разностей · истинная теплоемкость - это отношение бесконечно малых величин · теплоемкость при постоянном объеме - соответствует процессу подвода тепла при постоянном объеме, когда не совершается работа расширения и количество тепла соответствует изменению внутренней энергии
· теплоемкость при постоянном давлении
соответствует процессу подвода тепла при постоянном давлении, когда повышение температуры приводит к изменению объема и, таким образом, одновременно совершается некоторая работа расширения Для идеального газа
где R – газовая постоянная. На величину теплоемкости влияет природа вещества. Так, газы со сходным строением молекул имеют близкие значения теплоемкостей. С усложнением строения молекул теплоемкость, как правило, возрастает. Повышение температуры также обычно приводит к росту теплоемкости. Температурную зависимость теплоемкости нельзя получить на основе законов термодинамики, ее определяют опытным путем. Зависимость теплоемкости от температуры имеет достаточно сложный вид, для описания ее в относительно узком интервале температур в большинстве случаев используют степенные уравнения вида
или
Значения коэффициентов этих уравнений для многих веществ можно найти в [6]. Влияние температуры на теплоемкость жидкости меньше, чем на теплоемкость газов. Теплоемкость твердых тел при низких температурах резко уменьшается и стремится к нулю при приближении температуры к абсолютному нулю. Теплоемкость многоатомных газов, находящихся под небольшими давлениями, практически зависит только от температуры (у одноатомных, идеальных газов она постоянна). Теплоемкость реальных газов меняется и с температурой, и с давлением, причем с повышением температуры эффект воздействия давления уменьшается. Влияние давления велико вблизи кривой насыщения, в сверхкритической и особенно в критической области, так как в критической точке значение Cv проходит через максимум, а Cp стремится к бесконечности. Влиянием давления на теплоемкость твердых тел можно пренебречь. Теплоемкость жидкостей с давлением меняется незначительно; только вблизи кривой насыщения и более всего в критической области влияние давления становится существенным. Экспериментальное определение теплоемкости обычно проводят при постоянном давлении, и потому в справочной литературе чаще приводятся значения Cр. В практике химических расчетов также чаще используются теплоемкости при постоянном давлении, поэтому в “Пособии” нами рассмотрены методы их прогнозирования. Ниже приведены методы прогнозирования теплоемкости при постоянном давлении, равном стандартному (1 физическая атмосфера) - При оценочных расчетах можно считать, что для большинства жидкостей их удельная теплоемкость лежит в пределах от 1,7 Дж/(г×К) до 2,5 Дж/(г×К). Исключение составляют H2O и NH3, для которых удельная теплоемкость равна примерно 4 Дж/(г×К), а также многие галогенпроизводные органических соединений, для которых удельная теплоемкость составляет 0,6–1,5 Дж/(г×К). Теплоемкость насыщенного пара при сравнительно небольших давлениях можно принять равной 2/3 от теплоемкости жидкости. Теплоемкость веществ, находящихся в твердом состоянии (при температурах не очень низких), можно считать примерно в 2 раза большей теплоемкости того же вещества в газообразном состоянии.
Расчет теплоемкости органических веществ методом Бенсона [5-7, 17-18]
В табл. 1.2 приведены значения групповых вкладов для расчета теплоемкостей веществ, находящихся в состоянии идеального газа, при температурах, кратных 100 К. Расчет Расчет теплоемкости методом Бенсона иллюстрируется примером 3.1. Пример 3.1 Методом Бенсона рассчитать теплоемкость изобутилбензола в идеально-газовом состоянии ( Рассчитать теплоемкость Решение 1. Рассчитываются теплоемкости при заданных температурах. Результаты расчета для 300, 400, 500, 600 и 800 К приведены в табл. 3.1. Температурная зависимость теплоемкости имеет нелинейный характер и иллюстрируется рис. 3.1. Там же дан вид аппроксимирующего уравнения. Из рисунка видно, что принятым в таблицах Бенсона температурным диапазонам, действительно, свойственен близкий к линейному вид для температурных зависимостей теплоемкости. 2. Вычисляется теплоемкость при заданных температурах. T = 325,0 K
Расхождение в оценках: (189,2–187,9)/187,9×100 = 0,7 % отн.
T = 487,5 K
Расхождение в оценках: -0,8 % отн. T = 780,0 K
Расхождение в оценках: 1 % отн.
Таблица 3.1
Рис. 3.1. Температурная зависимость идеально-газовой теплоемкости изобутилбензола Таким образом, прогнозирование теплоемкости при температурах, которые не кратны 100 К, может практически с равным успехом осуществляться как линейной интерполяцией “соседних” значений теплоемкостей при температурах, кратных 100 К, так и на основе аппроксимирующего их уравнения.
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (524)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||