Мегаобучалка Главная | О нас | Обратная связь


Атом квантовомеханический.



2020-02-04 199 Обсуждений (0)
Атом квантовомеханический. 0.00 из 5.00 0 оценок




В середине 20-х гг. французский физик Л. де Бройль высказал смелую идею: все материальные частицы (в том числе и электроны) обладают не только материальными, но и волновыми свойствами. Вскоре удалось показать, что электроны, подобно световым волнам, могут также огибать препятствия.

Раз электрон – волна, то его движение в атоме может быть описано с помощью волнового уравнения. Такое уравнение вывел в 1926 г. австрийский физик Э. Шрёдингер. Математики называют его дифференциальным уравнением второго порядка в частных произвольных. Для физиков же это основное уравнение квантовой механики.

Вот как выглядит это уравнение:

+ + + y = 0,

где m – масса электрона; r – расстояние электрона от ядра; e – заряд электрона; Е – полная энергия электрона, равная сумме кинетической и потенциальной энергии; Z – порядковый номер атома (для атома водорода равен 1); h – «квант действия»; x , y , z – координаты электрона; y - волновая функция (абстрактная отвлечённая величина, характеризующая степень вероятности).

Степень вероятности того, что электрон находится в определённом месте пространства вокруг ядра. Если y = 1, то, значит, электрон действительно должен находиться в этом самом месте; если же y = 0, то электрона там нет и в помине.

Представление о вероятности нахождения электрона центральное в квантовой механике. А величина y (пси)-функции (точнее говоря, квадрат её величины) выражает вероятность пребывания электрона в той или другой точке пространства.

В атоме квантовомеханическом нет определённых электронных орбит, столь чётко очерченных в боровской модели атома. Электрон словно бы размазан в пространстве в виде некоторого облака. Но плотность этого облака различна: как говорится, где густо, а где и пусто. Большей плотности облака соответствует большая вероятность нахождения электрона.

От отвлечённой квантовомеханической модели атома можно перейти к наглядной и зримой модели атома Бора. Для этого нужно решить уравнение Шрёдингера. Оказывается, что волновая функция связана с тремя различными величинами, которые могут принимать только целочисленные значения. Более того, последовательность изменения этих величин такова, что они не могут быть ни чем иным, как квантовыми числами. Главным, орбитальным и магнитным. А ведь они были введены специально для обозначения спектров различных атомов. Затем они весьма органично перекочевали в боровскую модель атома. Такова научная логика – к ней не подкопается даже самый суровый скептик.

Всё это значит, что решение уравнения Шрёдингера в конечном счёте приводит к выводу последовательности заполнения электронных оболочек и подоболочек атомов. В этом главное достоинство атома квантовомеханического перед атомом Бора. И привычные для планетарного атома понятия можно пересмотреть под углом зрения квантовой механики. Можно сказать, что орбита – некоторая совокупность вероятных положений данного электрона в атоме. Она соответствует определённой волновой функции. Вместо термина «орбита» в современной атомной физике и химии употребляется термин «орбиталь».

Итак, уравнение Шрёдингера – это словно волшебная палочка, устраняющая все недочёты, содержащиеся в формальной теории периодической системы. Превращает «формальное» в «фактическое».

В действительности это далеко не так. Потому что уравнение имеет точное решение только для атома водорода, самого простейшего из атомов. Для атома гелия и последующих точно решить уравнение Шрёдингера нельзя, поскольку прибавляются силы взаимодействия между электронами. А учесть их влияние на конечный результат – математическая задача невообразимой сложности. Человеческим способностям она недоступна; только быстродействующие электронно-вычислительные машины, проводящие сотни тысяч операций в секунду, могут сравниться с ней. Да и то лишь при условии, что программа для вычислений разрабатывается с многочисленными упрощениями и приближениями.



2020-02-04 199 Обсуждений (0)
Атом квантовомеханический. 0.00 из 5.00 0 оценок









Обсуждение в статье: Атом квантовомеханический.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (199)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)