Мегаобучалка Главная | О нас | Обратная связь


Современная оперативная память



2020-02-04 179 Обсуждений (0)
Современная оперативная память 0.00 из 5.00 0 оценок




Введение

 

Оперативная память (ОЗУ, RAM) - это одна из частей памяти компьютера (ЭВМ). Она служит поддержкой процессору компьютера (CPU). В оперативной памяти временно сохраняются данные и команды, необходимые процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, оперативная память выполнена по технологии динамической памяти с произвольным доступом (англ. dynamic random access memory, DRAM). Понятие памяти с произвольным доступом предполагает, что текущее обращение к памяти не учитывает порядок предыдущих операций и расположения данных в ней. ОЗУ может изготавливаться как отдельный блок (например, модули памяти для IBM-PCсовместимых компьютеров), или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Так как IBM-PC совместимые компьютеры преобладают и в России, и в мире, то рассмотрим их оперативную память. Изначально объём оперативной памяти был равен 640 килобайтам. Это так называемая "основная область памяти" (англ. conventional memory). Чуть позже в ОЗУ появились дополнительные 384 килобайта "верхней области памяти", названные Upper Memory Area (UMA), и общий объём оперативной памяти компьютера вырос до 1 мегабайта.

В основную память загружается таблица векторов прерываний, различные данные из BIOS, а также могут загружаться некоторые 16-битные программы DOS. Верхняя память используется для размещения информации об аппаратной части компьютера. Она условно делится на три области по 128 Кбайт:

а) для видеопамяти;

б) для BIOS адаптеров;

в) для системной BIOS (обычно не более 64 килобайт).

Остальное адресное пространство из верхней области с помощью специальных драйверов (например, EMM386.EXE) использовалось для доступа к расширенной памяти через спецификацию расширенной памяти (англ. Expanded Memory Specification, EMS). EMS использовалась преимущественно в компьютерах с размером оперативной памяти менее 1 Мбайт и практически не используется в современных компьютерах.

То есть, в современных компьютерах так же есть основная область памяти и верхняя область памяти. Их объём остался прежним: 640 и 384 килобайт, соответственно. Вы уже поняли, что всё, что сверх этой ёмкости - это дополнительная память (англ. eXtended Memory Specification, XMS). Дополнительная память начинается с адресов выше первого мегабайта и её объём зависит от общего объёма оперативной памяти, установленной на компьютере.

Стоит сказать и о High Memory Area (HMA) - это область дополнительной памяти за первым мегабайтом размером 64 Кбайт минус 16 байт. Её появление было обусловлено ошибкой в процессоре 80286, в котором не отключалась 21-я линия адреса (а всего их в этом процессоре 24), в результате при обращении по адресам выше FFFF:000F обращение шло ко второму мегабайту памяти вместо начала первого мегабайта.

Теперь поговорим о различных типах оперативной памяти. Сегодня распространённым типом модулей ОЗУ являются DDR и DDR2. Всё ещё встречаются модули SD-RAM (DIMM). А в некоторых типах устройств используются и модули DDR3. Что они из себя представляют и в чём их различия?


Современная оперативная память

 

1.1 SDRAM

 

Аббревиатура SDRAM расшифровывается как Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом. Остановимся подробнее на каждом из этих определений. Под «синхронностью» обычно понимается строгая привязка управляющих сигналов и временных диаграмм функционирования памяти к частоте системной шины. Вообще говоря, в настоящее время изначальный смысл понятия синхронности становится несколько условным. Во-первых, частота шины памяти может отличаться от частоты системной шины (в качестве примера можно привести уже сравнительно давно существующий «асинхронный» режим работы памяти DDR SDRAM на платформах AMD K7 с чипсетами VIA KT333/400, в которых частоты системной шины процессора и шины памяти могут соотноситься как 133/166 или 166/200 МГц). Во-вторых, ныне существуют системы, в которых само понятие «системной шины» становится условным — речь идет о платформах класса AMD Athlon 64 с интегрированным в процессор контроллером памяти. Частота «системной шины» (под которой в данном случае понимается не шина HyperTransport для обмена данными с периферией, а непосредственно «шина» тактового генератора) в этих платформах является лишь опорной частотой, которую процессор умножает на заданный коэффициент для получения собственной частоты. При этом контроллер памяти всегда функционирует на той же частоте, что и сам процессор, а частота шины памяти задается целым делителем, который может не совпадать с первоначальным коэффициентом умножения частоты «системной шины». Так, например, режиму DDR-333 на процессоре AMD Athlon 64 3200+ будут соответствовать множитель частоты «системной шины» 10 (частота процессора и контроллера памяти 2000 МГц) и делитель частоты памяти 12 (частота шины памяти 166.7 МГц). Таким образом, под «синхронной» операцией SDRAM в настоящее время следует понимать строгую привязку временных интервалов отправки команд и данных по соответствующим интерфейсам устройства памяти к частоте шины памяти (проще говоря, все операции в ОЗУ совершаются строго по фронту/срезу синхросигнала интерфейса памяти). Так, отправка команд и чтение/запись данных может осуществляться на каждом такте шины памяти (по положительному перепаду «фронту» синхросигнала; в случае памяти DDR/DDR2 передача данных происходит как по «фронту», так и по отрицательному перепаду — «срезу» синхросигнала), но не по произвольным временным интервалам (как это осуществлялось в асинхронной DRAM).

Понятие «динамической» памяти, DRAM, относится ко всем типам оперативной памяти, начиная с самой древней, «обычной» асинхронной динамической памяти и заканчивая современной DDR2. Этот термин вводится в противоположность понятия «статической» памяти (SRAM) и означает, что содержимое каждой ячейки памяти периодически необходимо обновлять (ввиду особенности ее конструкции, продиктованной экономическими соображениями). В то же время, статическая память, характеризующаяся более сложной и более дорогой конструкцией ячейки и применяемая в качестве кэш-памяти в процессорах (а ранее — и на материнских платах), свободна от циклов регенерации, т.к. в ее основе лежит не емкость (динамическая составляющая), а триггер (статическая составляющая).

Наконец, стоит также упомянуть о «памяти с произвольным доступом» Random Access Memory, RAM. Традиционно, это понятие противопоставляется устройствам «памяти только на чтение» — Read-Only Memory, ROM. Тем не менее, противопоставление это не совсем верно, т.к. из него можно сделать вывод, что память типа ROM не является памятью с произвольным доступом. Это неверно, потому как доступ к устройствам ROM может осуществляться в произвольном, а не строго последовательном порядке. И на самом деле, наименование «RAM» изначально противопоставлялось ранним типам памяти, в которых операции чтения/записи могли осуществляться только в последовательном порядке. В связи с этим, более правильно назначение и принцип работы оперативной памяти отражает аббревиатура «RWM» (Read-Write Memory), которая, тем не менее, встречается намного реже. Заметим, что русскоязычным сокращениям RAM и ROM — ОЗУ (оперативное запоминающее устройство) и ПЗУ (постоянное запоминающее устройство), соответственно, подобная путаница не присуща.

 

1.2 DDR/DDR2 SDRAM

 

Начнем с рассмотрения микросхем DDR SDRAM. По большей части они оказываются похожими на микросхемы SDR SDRAM — так, оба типа микросхем, как правило, имеют одинаковую логическую организацию (при одинаковой емкости), включая 4-банковую организацию массива памяти, и одинаковый командно-адресный интерфейс. Фундаментальные различия между SDR и DDR лежат в организации логического слоя интерфейса данных. По интерфейсу данных памяти типа SDR SDRAM данные передаются только по положительному перепаду («фронту») синхросигнала. При этом внутренняя частота функционирования микросхем SDRAM совпадает с частотой внешней шины данных, а ширина внутренней шины данных SDR SDRAM (от непосредственно ячеек до буферов ввода-вывода) совпадает с шириной внешней шины данных. В то же время, по интерфейсу данных памяти типа DDR (а также DDR2) данные передаются дважды за один такт шины данных — как по положительному перепаду синхросигнала («фронту»), так и по отрицательному («срезу»).

Возникает вопрос — как можно организовать удвоенную скорость передачи данных по отношению к частоте шины памяти? Напрашиваются два решения — можно либо увеличить в 2 раза внутреннюю частоту функционирования микросхем памяти (по сравнению с частотой внешней шины), либо увеличить в 2 раза внутреннюю ширину шины данных (по сравнению с шириной внешней шины). Достаточно наивно было бы полагать, что в реализации стандарта DDR было применено первое решение, но и ошибиться в эту сторону довольно легко, учитывая «чисто маркетинговый» подход к маркировке модулей памяти типа DDR, якобы функционирующих на удвоенной частоте (так, модули памяти DDR с реальной частотой шины 200 МГц именуются «DDR-400»). Тем не менее, гораздо более простым и эффективным — исходя как из технологических, так и экономических соображений — является второе решение, которое и применяется в устройствах типа DDR SDRAM. Такая архитектура, применяемая в DDR SDRAM, называется архитектурой «2n-предвыборки» (2n-prefetch). В этой архитектуре доступ к данным осуществляется «попарно» — каждая одиночная команда чтения данных приводит к отправке по внешней шине данных двух элементов (разрядность которых, как и в SDR SDRAM, равна разрядности внешней шины данных). Аналогично, каждая команда записи данных ожидает поступления двух элементов по внешней шине данных. Именно это обстоятельство объясняет, почему величина «длины пакета» (Burst Length, BL) при передаче данных в устройствах DDR SDRAM не может быть меньше 2.

Устройства типа DDR2 SDRAM являются логическим продолжением развития архитектуры «2n-prefetch», применяемой в устройствах DDR SDRAM. Вполне естественно ожидать, что архитектура устройств DDR2 SDRAM именуется «4n-prefetch» и подразумевает, что ширина внутренней шины данных оказывается уже не в два, а в четыре раза больше по сравнению с шириной внешней шины данных. Однако речь здесь идет не о дальнейшем увеличении количества единиц данных, передаваемых за такт внешней шины данных — иначе такие устройства уже не именовались бы устройствами «Double Data Rate 2-го поколения». Вместо этого, дальнейшее «уширение» внутренней шины данных позволяет снизить внутреннюю частоту функционирования микросхем DDR2 SDRAM в два раза по сравнению с частотой функционирования микросхем DDR SDRAM, обладающих равной теоретической пропускной способностью. С одной стороны, снижение внутренней частоты функционирования микросхем, наряду со снижением номинального питающего напряжения с 2.5 до 1.8 V (вследствие применения нового 90-нм технологического процесса), позволяет ощутимо снизить мощность, потребляемую устройствами памяти. С другой стороны, архитектура 4n-prefetch микросхем DDR2 позволяет достичь вдвое большую частоту внешней шины данных по сравнению с частотой внешней шины данных микросхем DDR — при равной внутренней частоте функционирования самих микросхем. Именно это и наблюдается в настоящее время — модули памяти стандартной скоростной категории DDR2-800 (частота шины данных 400 МГц) на сегодняшний день достаточно распространены на рынке памяти, тогда как последний официальный стандарт DDR ограничен скоростной категорией DDR-400 (частота шины данных 200 МГц).

DDR2 — это «все та же DDR», мы по-прежнему имеем удвоенную скорость передачи данных за один такт внешней шины данных — иными словами, на каждом такте внешней шины данных мы ожидаем получить не менее двух элементов данных (как всегда, разрядностью, равной разрядности внешней шины данных) при чтении, и обязаны предоставить микросхеме не менее двух элементов данных при записи. В то же время, вспоминаем, что внутренняя частота функционирования микросхем DDR2 составляет половину от частоты ее внешнего интерфейса. Таким образом, на один «внутренний» такт микросхемы памяти приходится два «внешних» такта, на каждый из которых, в свою очередь, приходится считывание/запись двух элементов. Следовательно, на каждый «внутренний» такт микросхемы памяти приходится считывание/запись сразу четырех элементов данных (отсюда и название — 4n-prefetch), т.е. все операции внутри микросхемы памяти осуществляются на уровне «4-элементных» блоков данных. Отсюда получаем, что минимальная величина длины пакета (BL) должна равняться 4. Можно доказать, что, в общем случае, архитектуре «2nn-prefetch» всегда соответствует минимальная величина Burst Length, равная 2n(n = 1 соответствует DDR; n = 2 — DDR2; n = 3 —DDR3).

 

1.3 DDR3 SDRAM

 

Стандарт DDR3 на сегодняшний день еще не принят JEDEC, его принятие ожидается ближе к середине текущего года (предположительно, он будет носить имя JESD79-3). Поэтому представленная ниже информация о микросхемах и модулях памяти DDR3 пока что носит предварительный характер.

Начнем с микросхем памяти DDR3, первые прототипы которых были объявлены еще в 2005 году. Доступные сегодня образцы микросхем DDR3 основаны на 90-нм технологическом процессе и характеризуются уровнем питающего напряжения 1.5 В, что само по себе вносит примерно 30% вклад в снижение мощности, рассеиваемой этими микросхемами памяти по сравнению с микросхемами DDR2 (имеющими стандартное питающее напряжение 1.8 В). Полное снижение энергопотребления по сравнению с равночастотной DDR2 достигает примерно 40%, что особенно важно для мобильных систем. Емкости компонентов, предусмотренные предварительными спецификациями JEDEC, варьируются от 512 Мбит до 8 Гбит, тогда как типичные выпускаемые на сегодня микросхемы имеют емкость от 1 до 4 Гбит. Теоретическая пропускная способность микросхем DDR3 вдвое выше по сравнению с DDR2 благодаря использованию рассмотренной выше схемы 8n-prefetch (против 4n-prefetch в DDR2). Количество логических банков в микросхемах DDR3 также увеличено вдвое по сравнению с типичным значением для DDR2 (4 банка) и составляет 8 банков, что теоретически позволяет увеличить «параллелизм» при обращении к данным по схеме чередования логических банков и скрыть задержки, связанные с обращением к одной и той же строке памяти (tRP). Микросхемы DDR3 корпусируются в FBGA-упаковку, обладающую рядом улучшений по сравнению с DDR2, а именно (рисунок 1.1):

- большим количеством контактов питания и «земли»;

- усовершенствованным распределением питающих и сигнальных контактов, позволяющим достичь лучшее качество электрического сигнала (необходимое для более устойчивого функционирования при высоких частотах);

- полным «заселением» массива, что увеличивает механическую прочность компонента.

 

Рисунок 1.1 - Корпусировка микросхем DDR3 и DDR2

 

Отличительной особенностью схемотехнического дизайна модулей памяти DDR3 является применение «сквозной», или «пролетной» (fly-by) архитектуры передачи адресов и команд, а также сигналов управления и тактовой частоты отдельным микросхемам модуля памяти с применением внешнего терминирования сигналов (резистором, расположенным на модуле памяти). Схематически эта архитектура представлена на рис. 6. Она позволяет добиться увеличения качества передачи сигналов, что необходимо при функционировании компонентов при высоких частотах, типичных для памяти DDR3 и не требуется для компонентов памяти стандарта DDR2.

 

Рисунок 1.2 - «Пролетная» (fly-by) архитектура передачи сигналов в модулях памяти DDR3

 

Различие между способом подачи адресов и команд, сигналов управления и тактовой частоты в модулях памяти DDR2 и DDR3 (на примере модулей, физический банк которых составлен из 8 микросхем разрядностью x8) представлено на рис. 7.

В модулях памяти DDR2 подача адресов и команд осуществляется параллельно на все микросхемы модуля, в связи с чем, например, при считывании данных, все восемь 8-битных элементов данных окажутся доступными в один и тот же момент времени (после подачи соответствующих команд и истечения соответствующих задержек) и контроллер памяти сможет одновременно прочитать все 64 бита данных.

В то же время, в модулях памяти DDR3 вследствие применения «пролетной» архитектуры подачи адресов и команд каждая из микросхем модуля получает команды и адреса с определенным отставанием относительно предыдущей микросхемы, поэтому элементы данных, соответствующие определенной микросхеме, также окажутся доступными с некоторым отставанием относительно элементов данных, соответствующих предыдущей микросхеме в ряду, составляющем физический банк модуля памяти. В связи с этим, с целью минимизации задержек, в модулях памяти DDR3, по сравнению с модулями DDR2, реализован несколько иной подход ко взаимодействию контроллера памяти с шиной данных модуля памяти. Он называется «регулировкой уровня чтения/записи» (read/write leveling) и позволяет контроллеру памяти использовать определенное смещение по времени при приеме/передачи данных, соответствующее «запаздыванию» поступления адресов и команд (а, следовательно, и данных) в определенную микросхему модуля. Этим достигается одновременность считывания (записи) данных из микросхем (в микросхемы) модуля памяти.

 

Рисунок 1.3 - Регулировка уровня чтения/записи (read/write leveling) в модулях памяти DDR3

 

Предположительно, модули памяти DDR3 будут предлагаться в вариантах от DDR3-800 до DDR3-1600 включительно, далее не исключено появление и более высокоскоростных модулей категории DDR3-1866. Рейтинг производительности модулей памяти DDR3 имеет значение вида «PC3-X», где X означает пропускную способность модуля в одноканальном режиме, выраженную в МБ/с (если быть точным — млн. байт/с). Поскольку модули памяти DDR3 имеют ту же разрядность, что и модули памяти DDR2 — 64 бита, численные значения рейтингов равночастотных модулей памяти DDR2 и DDR3 совпадают (например, PC2-6400 для DDR2-800 и PC3-6400 для DDR3-800).

Типичные схемы таймингов, предполагаемые в настоящее время для модулей памяти DDR3, выглядят весьма «внушительно» (например, 9-9-9 для DDR3-1600), однако не стоит забывать, что столь большие относительные значения таймингов, будучи переведенными в абсолютные значения (в наносекундах), учитывая все меньшее время цикла (обратно пропорциональное частоте шины памяти), становятся вполне приемлемыми. Так, например, задержка сигнала CAS# (tCL) для модулей памяти DDR3-800 со схемой таймингов 6-6-6 составляет 15 нс, что, конечно, несколько великовато по сравнению с «типичными» DDR2-800 со схемой таймингов 5-5-5, для которых tCL составляет 12.5 нс. В то же время, память типа DDR3-1600 со схемой таймингов 9-9-9 уже характеризуются величиной задержки tCL всего 11.25 нс, что находится на уровне DDR2-533 с достаточно низкими задержками (схемой таймингов 3-3-3). Таким образом, даже при предполагаемом на данный момент «раскладе» схем таймингов модулей памяти DDR3 можно ожидать постепенное снижение реально наблюдаемых задержек при доступе в память, вплоть до значений, типичных для нынешнего поколения модулей памяти DDR2. К тому же, не стоит забывать и о дальнейшем снижении задержек (и снижении таймингов) по мере развития технологии.

 

1.4 RAMBUS (RDRAM)

 

На данный момент существует только один способ повышения пропускной способности (BW — BandWidth) любой подсистемы — это увеличение либо частоты коммутации шины, либо ее "ширины" (разрядности). Совместное увеличение этих параметров довольно проблематично и имеет быстрое "насыщение", поскольку влияние электромагнитной интерференции (ЭМИ) и частотных эмиссий в этом случае возрастает нелинейно — EMI=kIAf2. Это обстоятельство вынуждает разработчиков идти на компромиссы. В противовес технологии SDRAM, где используется 64bit магистраль и частоты до 133MHz, Rambus DRAM предоставляет 16bit шину и результирующую частоту обмена до 800MHz, используя технологию DDR, передавая/принимая данные по фронту/срезу синхросигнала. Узкая шина и сверхвысокая частота значительно повышают эффективность использования и загрузку канала, максимально освобождая протокол от временных задержек. Итак, детально рассмотрим технологию Rambus DRAM.

Вообще, существует три разновидности памяти RDRAM, представляющие собой некую эволюцию развития технологии: Base (BRDRAM), Concurrent (CRDRAM) и Direct (DRDRAM). Отличие первого и второго совсем небольшие, а вот изменения последнего просто революционны. Причем, технологии Base и Concurrent настолько сильно переплетаются, что, в принципе, это одно и тоже.

 

Таблица 1.1

Характеристики различных видов памяти RDRAM

2020-02-04 179 Обсуждений (0)
Современная оперативная память 0.00 из 5.00 0 оценок









Обсуждение в статье: Современная оперативная память

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему в черте города у деревьев заболеваемость больше, а продолжительность жизни меньше?
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему агроценоз не является устойчивой экосистемой



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (179)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)