Мегаобучалка Главная | О нас | Обратная связь


Виды повреждений вводов



2020-02-04 335 Обсуждений (0)
Виды повреждений вводов 0.00 из 5.00 0 оценок




 

В процессе транспортирования, хранения и эксплуатации во вводах появляются различные повреждения, которые могут привести к большому экономическому ущербу При несвоевременном обнаружении и устранении. Устранить повреждения можно с демонтажом и без демонтажа ввода трансформатора, без разборки, с полной или частичной разборкой ввода в зависимости от характера повреждений. Все работы в условиях эксплуатации вводов без демонтажа можно производить только при отключенном напряжении. В таблице 1 представлен перечень наиболее часто встречающих повреждений вводов и их вероятностных причин.

Отмечаем следующие особенности повреждений.

Повреждения 1-4 являются механическими; повреждения 5-8 принадлежат группе течи масла и причиной их является в основном нарушение уплотнений вводов. Повреждения 1 -8 можно обнаружить визуальным наблюдением или вспомогательными устройствами. Повреждения 9-15 являются внутренними. Их можно обнаружить только техническими средствами контроля и диагностики. В дальнейшем мы будем рассматривать только внутренние повреждения.

Статистика и опыт эксплуатации показывают, что основными причинами повреждений вводов являются дефекты изоляции. К числу их относятся увлажнение и старение материалов, ухудшение свойств изоляционного масла, а также частичные разряды (ЧР). Причины возникновения и характер развития дефектов в основном зависят от конструкции вводов. Увлажнение и связанный с ним тепловой пробой или перекрытие по поверхности наблюдаются у негерметичных вводов. В герметичных вводах преобладают повреждения, определяемые процессами частичных разрядов или ухудшением состояния масла.

Наиболее слабым узлом негерметичных вводов является система защиты масла от воздействия влаги с помощью масляного гидрозатвора и силикагелевого воздухоосушителя. При длительной эксплуатации, особенно в случае несвоевременной замены силикагеля, масло увлажняется, ухудшаются его изоляционные характеристики, в результате чего могут возникнуть частичные разряды в масле. В дальнейшем по поверхности бумажной изоляции начинает образовываться так называемый "ползущий" разряд: от одной или нескольких исходных точек поврежденной поверхности изоляции как бы расползаются прожоги, образуя сложный рисунок с ослабленной поверхностной изоляцией.

 

Таблица 3.1 Характерные повреждения вводов и их вероятные причины.

Повреждение Вероятная причина повреждения
1 Повреждено стекло маслоуказателя Механическое повреждение при транспортировании или хранении
2 Фарфоровые покрышки имеют сколы Механическое повреждение
3 Течь масла из бака давления Механическое повреждение бака
4 Разбито стекло манометра Механическое повреждение
5 Течь масла в местах уплотнений расширителя, пробок, трубки манометра, маслоуказателя и т.п. 1) Недостаточное усилие стяжки или затяжки 2) Старение резины 3) Нарушение сальниковых уплотнений
6 Течь масла из измерительного вывода 1) Поврежден фарфор вывода 2) Нарушено уплотнение 3) Некачественная припайка проводника к контактной шпильке
7 Течь масла из нижнего узла герметичного ввода Нарушено резиновое уплотнение
8 Течь масла из верхнего узла герметичного ввода Нарушено резиновое уплотнение
9 Повышение давления во вводе (дефект характерен для некоторых герметичных вводов 220 кВ) 1) Внутреннее повреждение во вводе 2) Неисправность сильфонного устройства
10 Повышенный нагрев конструкционных деталей Длительная перегрузка и износ изоляции
11 Ухудшение трансформаторного масла Загрязнение, окисление, увлажнение и старение масла, растворение в нем лаков и смол
12 Ухудшение характеристик внутренней изоляции ввода Старение внутренней изоляции ввода и масла
13 Тепловой пробой изоляции остова Увеличение тепловыделения из-за роста потерь энергии в изоляции
14 Перекрытие по внутренней поверхности нижней фарфоровой покрышки Наличие осадка на поверхности нижней фарфоровой покрышки
15 Различные виды разрядов в масле и по поверхности фарфора Повышенная напряженность электрического поля внутри ввода; старение изоляции и масла

 

При приближении "ползущего" разряда к заземленной части происходит пробой изоляции с возникновением короткого замыкания. Пробой при значительном ухудшении изоляционных характеристик может возникнуть и безобразования ползущего разряда. Аналогичное повреждение можетпроизойти и в томслучае, если при ремонте ввода была плохо просушена бумажная изоляция.

Частичные разряды также разрушают изоляцию, причем это обычно приводит к дальнейшему увеличению интенсивностиразрядов. На стадии критических разрядов пробой быстро завершается или переходит в перекрытие оставшейся части изоляции по поверхности.

Герметичные вводы менее трудоемки в эксплуатации и более надежны, чем негерметичные. Повреждения изоляции герметичных вводов в большинстве случаев связаны с ухудшением состояния масла и выпадением на внутреннюю поверхность фарфора ина остов полупроводящего осадка. Во вводах, залитых маслом ГК, наблюдалось большое газовыделение из-за частичных разрядов, что обусловлено недостаточной газостойкостью указанного масла. Развитие этого дефекта приводит к интенсивным частичным или поверхностным разрядам, которые завершаются перекрытием между токоведущими частями.

Для рассматриваемых процессов характерны достаточно медленно протекающие начальные стадии ухудшения (старения) изоляции с нарастающим темпом развития дефекта и завершающая их сравнительно быстрая потеря электрической прочности изоляционной конструкции.

Возникновение дефектов во вводе, их последующее развитие обусловлено наличием целого ряда факторов:

- нарушениями технологической дисциплины в условиях производства в процессе изготовления;

- нарушениями требований нормативно-технической документации по хранению, монтажу и эксплуатации вводов или трансформатора, на котором они установлены;

- снижением диэлектрических свойств изоляции в результате ускоренного старения, обусловленного взаимодействием конструкционных материалов или недостаточной изученностью процессов, связанных со старением при воздействии эксплуатационных факторов;

- случайным возникновением дефектов в процессе эксплуатации при нерасчетных внешних воздействиях.

На характер дефектов также влияет тип трансформаторного масла: масло марки ГК обладает более высокой противоокислительной стабильностью по сравнению с маслом марки Т-750, но малой устойчивостью к воздействию частичных разрядов из-за низкой газостойкости.

Наиболее опасные виды дефектов, как показал анализ повреждений вводов, связаны с появлением примесных частиц в масле (осадка) и отложения его на внутренней поверхности нижней покрышки или изоляционного остова. Основная доля пробоев вводов происходила из-за завершения ползущих поверхностных разрядов по осадку на фарфоре при рабочем напряжении. Часть пробоев развивалась по поверхности остова.

С точки зрения диагностики, в механизме развития таких дефектов различаются две стадии. На первой стадии происходит относительно медленное снижение изоляционных свойств вследствие увеличения проводимости, тангенса угла диэлектрических потерь масла tgδм, появление в масле осадка и отложение его на поверхности остова и фарфора.

На второй стадии возможно возникновение повышенных частичных разрядов в масле, развитие поверхностных ползущих разрядов по осадку. При этом при увеличении поверхностной проводимости, измеренные по нормальной схеме значения тангенса угла диэлектрических потерь основной изоляции tgδ могут принять отрицательные значения, что связано с шунтирующим действием паразитной емкости и сопротивления между обкладками и проводящими загрязнениями (или даже науглероженными следами) на поверхности. Следует иметь ввиду, что уменьшение измеренного значения tgδ также может быть из-за увеличения проводимости наружной покрышки фарфора вследствие ее загрязнения, увлажнения и т.д. Эта стадия отличается образованием больших концентраций горючих газов.

Другая относительно часто встречающаяся группа дефектов обусловлена емкостными разрядами (искрением) вследствие нарушения изоляции, нарушения контактов или обрыва измерительного вывода, проводников присоединения нулевой обкладки и т.д. Их появление связано с дефектами изготовления при сборке, либо воздействия вибрации при транспортировке и эксплуатации. Возможны дефекты, развитие которых обусловлено наличием частичных разрядов в изоляционном остове. Частичные разряды в остове, превышающие нормированные значения, преимущественно имеют место на краях конденсаторных обкладок. Они возможны при нарушениях технологии изготовления остова или режимов вакуумной обработки и пропитки при сборке ввода, а также могут быть связаны с ухудшением свойств изоляции в процессе старения, который приводит к постепенному повышению уровня частичных разрядов. Повреждения, связанные с пробоем изоляционного остова при принятых технологических режимах и допустимых рабочих напряженностях, имели по аварийной статистике весьма малую вероятность появления.

4. Метод контроля вводов путем измерения тангенса угла диэлектрических потерь ( tg δ) и емкости изоляции

 

Это традиционный и самый распространенный метод периодического контроля вводов. При измерениях tgδ оценка состояния вводов должна производиться не только по его абсолютному значению, но и с учетом характера изменения tgδ и емкости по сравнению с ранее измеренными значениями с течением времени в отдельных зонах внутренней изоляции. Для сравнения измеренных значений tgδ изоляции вводов со значениями, полученными при предыдущих измерениях или нормированными для температуры 20°С данными, необходимо производить температурный пересчет.

Для измерения tgδ и емкости используют схему моста Шеринга (рис.3.3). В схеме, кроме испытуемой изоляции с емкостью Сх , находятся еще образцовый конденсатор (емкость Со) с очень малыми диэлектрическими потерями (газовая изоляция), регулируемое сопротивление R2 и регулируемый конденсатор (емкость С, и сопротивление R1). По мере регулирования сопротивления R2 и емкости конденсатора С, удается получить равновесие моста, когда индикатор показывает нуль. При этом из условия равновесия моста получается величины tgδ,и емкость испытуемой изоляции по выражениям:

 

tgδ = co С1 R1, Сх = Со R1, / R2

 

где со = 100П - угловая частота.

Кромеизмерения tgδ и емкости С1 основной изоляции (всего изоляционного остова) производится также оценка состояния изоляции измерительного конденсатора tgδ 2 , С2 (при наличии у ввода прибора для измерения напряжения ПИН) и изоляции последней обкладки (наружных слоев) tgδ 3, C3 относительно соединительной втулки ввода.

 


Рис.3. Схема моста Шеринга для измерения тангенса угла диэлетрических потерь и емкости изоляции.

 

Необходимость в оценке состояния наружных слоев изоляции вводов основана на соображении, что в случае увлажнения изоляционного остова наружные слои в первую очередь воспримут влагу и это позволит по значению tgδ 3 и динамике его изменения оценить их состояние. Увеличение tgδ изоляции ввода происходит при увлажнении бумаги, загрязнении масла, появлении частичных разрядов. В частности, его значение увеличено при наличии металлической пыли, попавшей из дефектного сильфона.

Величина tgδ дает усредненную объемную характеристику состояния изоляции, поскольку активная составляющая тока, вызванная диэлектрическими потерями в местном дефекте, при измерении относится к общему емкостному току ввода. Как правило, измерение tgδ позволяет обнаружить общее (т.е. охватывающее большую часть объема) ухудшение изоляции. Местные дефекты, т.е. дефекты, охватившие сравнительно небольшую часть объема изоляции, а также сосредоточенные дефекты плохо обнаруживаются измерением tgδ.

Измерение емкости изоляции, кроме информации об изменении структуры изоляции, вызвавшем изменение процессов поляризации, позволяет обнаружить и местные грубые дефекты (пробой части изоляции). Степень выявляемости дефектов также зависит от соотношения между объемами поврежденной и неповрежденной частей изоляции.

Практикуемые в эксплуатации методы контроля БМИ вводов 110-500 кВ, заключающиеся в измерении тангенса угла диэлектрических потерь и изоляционных характеристик масла, не выявляют многих быстро прогрессирующих дефектов во внутренней изоляции вводов в начальной стадии их развития.

Анализ результатов профилактических испытаний поврежденных маслонаполненных вводов показывает, что лишь в немногих случаях развитие дефектов в какой-то мере влияло на характеристики БМИ вводов. Недостаточной эффективности оценки состояния вводов по измеренной величине тангенса угла диэлектрических потерь во многом способствует низкий уровень напряженности электрического поля, создаваемой во внутренней изоляции ввода при его измерении (создаваемое для измерения tgδ напряжение - только 10 кВ, а класс напряжения вводов - 110 кВ и выше). При наличии частичных разрядов tgδ зависит от напряжения.

На практике был случай, когда ввод 110 кВ с БМИ имел электрический пробой нескольких слоев бумаги изоляционного остова, в то время как абсолютное значение тангенса угла диэлектрических потерь, измеренное у ввода при испытательном напряжении 10 кВ, не превышало нормированного значения.



2020-02-04 335 Обсуждений (0)
Виды повреждений вводов 0.00 из 5.00 0 оценок









Обсуждение в статье: Виды повреждений вводов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (335)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)