Мегаобучалка Главная | О нас | Обратная связь


Экспериментальное исследование оптимальных условий предыонизации



2020-02-04 193 Обсуждений (0)
Экспериментальное исследование оптимальных условий предыонизации 0.00 из 5.00 0 оценок




Первый эксперимент, показавший нам важность пра­вильного выбора условий предыонизации [9], прово­дился на ХеС1-лазере с апертурой d х Ъ = 7.8 х 4.4 см. Для возбуждения основного объемного разряда и вспо­могательного СР использовались две отдельные С-С-схемы питания, коммутируемые одновременно. При варьировании времени зарядки импульсного конденса­тора, подсоединенного к электродам основного объем­ного разряда, было замечено, что при близких времен­ных режимах ввода электрической энергии в разряд и неизменном импульсе УФ излучения СР энергия генера­ции значительно увеличивалась при уменьшении скоро­сти роста разрядного напряжения.

На рис.2 показаны рост приведенной напряженности электрического поля E ( f )/ N ( N - плотность частиц газа) на разрядном промежутке лазера и осциллограмма им­пульса /рг(г) УФ излучения предыонизатора. При усло­виях предыонизации, представленных на рис. 2,6, энергия генерации оказалась в 3 раза выше, чем в случае рис.2,а, характеризующегося большей скоростью нарастания E / N .

В вышеописанном эксперименте положение импульса разрядного напряжения было фиксировано по отноше­нию к импульсу предыонизации, и для лучшего понима­ния столь резкого увеличения энергии генерации был проведен второй эксперимент на XeCl-лазере с аперту­рой d х Ъ = 5 х 3 см. В этом лазере ввод энергии в ос­новной разряд осуществлялся электрической схемой с LC-инвертором и двумя ступенями магнитного сжатия импульса накачки, подобной описанной в [10]. Энерго­вклад в СР проводился с помощью независимой схемы импульсного питания, позволявшей варьировать как энергию, вводимую в СР, так и момент его включения.

На рис.3,а представлено взаимное положение им­пульсов напряжения £/(?), подаваемого на электроды ла­зера, и интенсивности УФ излучения СР /pr(?)- Этому со­ответствует временная задержка между ними, равная нулю. Нулевая задержка (та = 0) выбрана так, что на­чало импульса излучения предыонизатора Ipr ( t ) соответ-

10 8 6 4

В-см2); /рг (отн. ед.)

 

О tc ts 100

200  \Л (не) О

100

200 t (не)

Рис.2. Положение импульса УФ излучения предыонизатора /рг(<) от­носительно импульса приведенной напряженности электрического поля E ( f )/ Ntia . разрядном промежутке лазера при длительностях 140 (а) и 280 не (б) фронта нарастания E / N , соответствующих энергии генерации 2 (а) и 6 Дж (б) для смеси HCl:Xe:Ne = 0.35:2.5:400 кПа.

1/(кВ); /рг (отн. ед.)

30

20

10

О

-10

-400   -200      0      200 <(нс)

2.5 2.0 1.5 1.0

0.5 -100 0 100 200 300 400 та(нс)

Рис.3. Оптимальное положение импульса разрядного напряжения U ( t ) относительно импульса предыонизации Ipr ( t ) (а) и зависимости энергии генерации E \3 S от времени задержки tj между импульсами U ( t ) и /рг(<) при энерговкладах во вспомогательный СР 0.17 (7), 0.42 (2) и 1 Дж (5) (б).

соответствует моменту достижения на разрядном промежутке лазера приведенной напряженности электрического поля ( E / N ) C , при которой реализуется ионизационно-прилипательное равновесие в газе на предпробойной стадии развития объемного разряда: Vi ( E / N ) = va ( E / N ), где v;, va - частоты ионизации и прилипания электронов.

В эксперименте импульс разрядного напряжения U ( t ) неизменной формы можно было сдвигать по времени относительно его положения, показанного на рис.3,а, из­меняя таким образом время та задержки импульса на­пряжения на разряде относительно импульса предиони­зации.

При минимизированном энерговкладе в СР предионизатора (кривая 7 на рис.3,6) зависимость £1ias(td) име­ет четко выраженный максимум при та и 0. Это озна­чает, что предыонизация наиболее эффективно осуще­ствляется именно с момента достижения ионизационно-прилипательного равновесия в разрядном промежутке лазера. Рассмотрение зависимостей на рис.3,6 показы­вает, что увеличение энергии, затрачиваемой на предионизацию, значительно расширяет диапазон временной задержки (—15 ^ та ^ 200 не), при которой предыониза­ция максимально эффективна. При этом для лазера с магнитной компрессией импульса накачки и характерной скоростью нарастания разрядного напряжения dU / dt ~ 2- 10П В/с увеличение энерговклада во вспомогательный СР свыше Ерг и 0.42 Дж нецелесообразно, т. к. не приво­дит к повышению энергии генерации лазера или к замет­ному изменению зависимости £ias от та (кривые 2,3 на рис.3,6).

Третий эксперимент был проведен на XeCl-лазере с размерами разряда 5 х 3 х 70 см. Отличительной особен­ностью этого лазера является использование для накачки основного разряда схемы с предимпульсом [2], обеспечи­вающей энергию импульса генерации E \ as ^ 3 Дж при КПД ц к 3.6 % и длительность импульса генерации ~ 120 не.

На рис.4,а показано оптимальное положение им­пульса УФ предионизации /рг(?) относительно импульса напряжения на электродах основного разряда U ( t ), а так­же осциллограммы тока через разряд I ( f ) и импульса генерации /ias(?). По сравнению со схемой с магнитной компрессией импульса накачки (рис.3,а) здесь начальный участок импульса напряжения на разряде U ( t ) отлича­ется большей длительностью (свыше 0.5 мкс) и, следова­тельно, малой скоростью нарастания dU / dt < 5-Ю10 В/с (рис.4,а). Этому соответствует больший (не менее 0.2 мкс) временной интервал эффективной предионизации на стадии роста разрядного напряжения (как это видно из зависимостей £1ias(ta), представленных на рис.4,6).

Как видно из зависимостей U ( t ), Ipi ( t ), приведенных на рис.4,а, особенностью рассматриваемой техники на­качки является реализуемое непосредственно перед до­стижением максимума напряжения на разрядном проме­жутке лазера резкое увеличение скорости нарастания это­го напряжения (до ~5'10П В/с), что облегчает условия зажигания однородного объемного разряда за счет боль­шого перенапряжения. При этом в соответствии с зави­симостями 7,2 на рис.4,6 максимальные энергия генера­ции и КПД лазера достигаются при значительно мень­ших (примерно на порядок величины) энерговкладах в СР рг и 25 мДж), чем для схемы с не столь высокой скоростью нарастания напряжения (рис.3,6).

В результате оптимизации режимов предыонизации и возбуждения активной среды энерговклад во вспомога­тельный СР составил лишь 0.025 % от энерговклада в ос­новной объемный разряд компактного высокоэффектив­ного 0/ > 3 %) импульсно-периодического ХеС1-лазера.

1/(кВ);

Ipr, I, lias

(отн. ед.) 20

-20

-40

-600

-300

300

'(не)

*(Дж) 3

-300

о

300

та (не)

Рис.4. Экспериментальные осциллограммы импульса предыониза­ции Ipr ( t ), разрядного напряжения U ( t ), тока /((), импульса генерации las(') (и) и зависимости энергии генерации XeCl-лазера от tj при энерговкладах во вспомогательный СР 10 (1) и 25 мДж (2) (б) для схемы накачки с высоковольтным предымпульсом.

Эффективная предыонизация в XeCl-лазерах

207

Р(Вт) 600

400 200

О

О

100

200

/(Гц)

Рис.5. Зависимости средней мощности XeCl-лазера Р (1 — 3) и от­носительной нестабильности энергии генерации а (4—6) от частоты следования импульсов при длительности импульсов генерации 120 (1,4), 70 (2,5) и 45 не (5), 6).



2020-02-04 193 Обсуждений (0)
Экспериментальное исследование оптимальных условий предыонизации 0.00 из 5.00 0 оценок









Обсуждение в статье: Экспериментальное исследование оптимальных условий предыонизации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (193)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)