Мегаобучалка Главная | О нас | Обратная связь


Живое вещество биосферы



2020-02-04 232 Обсуждений (0)
Живое вещество биосферы 0.00 из 5.00 0 оценок




В качестве основных характеристик живого вещества биосферы В.И.Вернадский рассматривал суммарную массу, химический состав и энергию. Отметим наиболее важные аспекты сравнительного анализа этих характеристик живого вещества с подобными для остальных оболочек биосферы.

Суммарный химический состав живых организмов во многом отличается от состава атмосферы и литосферы. Он ближе к химическому составу гидросферы по абсолютному преобладанию атомов водорода и кислорода, но, в отличие от гидросферы, в организмах относительно велика доля углерода, кальция, азота, фосфора и серы.

Живое вещество в основном состоит из элементов, являющихся водными и воздушными мигрантами, т.е. образующих газообразные и растворимые соединения. Заслуживает внимания то обстоятельство, что 99,9% массы живых организмов приходится на те 14 элементов, которые преобладают и в земной коре, составляя в ней 96,9%, хотя и в других соотношениях. Таким образом, жизнь - это химическое производное литосферы. В организмах обнаружены почти все элементы таблицы Д.И. Менделеева, т.е. они характеризуются той же химией, что и неживая природа.

Биохимические процессы, осуществляющиеся в организмах, представляют собой сложные, организованные в циклы последовательности реакций. На воспроизведение их в неживой природе потребовались бы огромные энергетические затраты. В живых организмах они протекают при посредстве белковых катализаторов - ферментов, понижающих энергию активации реакций на несколько порядков величин. Материалы и энергию для обменных реакций живые существа черпают в окружающей среде. Они преобразуют среду уже только тем, что живут.

Все живое вещество по своей массе занимает ничтожную долю по сравнению с любой из верхних оболочек земного шара. По современным вероятностным оценкам общее количество массы живого вещества в современную эпоху составляет порядка 2420 млрд. т. (Это одна десятимиллионная часть массы литосферы). Однако в качественном отношении живое вещество представляет собой наиболее высокоорганизованную часть материи Земли и наиболее активную форму материи. Оно производит гигантскую геохимическую работу в биосфере, полностью преобразив верхние оболочки Земли за время своего существования.

 

Геохимическая работа живого вещества .

Основная планетарная функция живого вещества заключается в создании органического вещества в ходе фотосинтеза, т.е. в связывании и запасании (порой на очень длительное время) солнечной энергии, которая затем идет на поддержание множества других геохимических процессов в биосфере. За время существования жизни на Земле живое вещество превратило в потенциальную энергию органических соединений огромное количество солнечной энергии; значительная часть ее в ходе геологической истории накопилась в связанном виде. Для современной биосферы характерны залежи угля и других органических веществ, образовавшихся в палеозое, мезозое и кайнозое.

В биосфере в результате жизнедеятельности организмов в больших масштабах осуществляются такие химические процессы, как окисление и восстановление элементов с переменной валентностью (азот, сера, железо, марганец и др.). Микроорганизмы-восстановители гетеротрофны, используют в качестве источника энергии органические вещества. К ним относятся денитрифицирующие и сульфатредуцирующие бактерии, восстанавливающие из окисленных форм азот до элементарного состояния и серу до сероводорода. Микроорганизмы-окислители могут быть как автотрофами, так и гетеротрофами. Это бактерии, окисляющие сероводород и серу, нитри- и нитрофицирующие микроорганизмы, железные и марганцевые бактерии, концентрирующие эти металлы в своих клетках.

Геологические результаты деятельности этих организмов проявляются в образовании осадочных месторождений серы, образовании в анаэробных условиях залежей сульфидов металлов, а в аэробных - окисление их и перевод в растворимое состояние, возникновение железных и железомарганцевых руд.

За счет жизнедеятельности огромного числа гетеротрофов, в основном грибов, животных и микроорганизмов, происходит гигантская в масштабах всей Земли, работа по разложению органических остатков. При деструкции органической массы протекают два параллельных процесса. Разложение органических соединений в конечном счете до углекислого газа, аммиака и воды, а в анаэробных условиях еще и до водорода и углеводородов представляет процесс минерализации. Продукты минерализации вновь используются автотрофами. Кроме того, в почве часть освобождающихся веществ ароматической природы под влиянием жизнедеятельности микроорганизмов вновь конденсируется с образованием сложного комплекса соединений - почвенного гумуса (различные гумусовые кислоты и их соли) со значительным запасом энергии. Этот процесс стимулируется деятельностью многих почвенных групп гетеротрофов. Гумус является основой почвенного плодородия. Его разложение протекает в дальнейшем очень медленно, под влиянием определенной, автохтонной микрофлоры почв, чем достигается постоянство в обеспечении растений элементами минерального питания.

Природные воды, обогащенные этими продуктами минерализации, становятся химически высокоактивными и выветривают горные породы.

Процесс разложения органических веществ, при котором освобождается химическая энергия, характерен для всех частей биосферы, где есть живые организмы, тогда как фотосинтез протекает только на поверхности суши и в верхнем слое водоемов. Часть органического вещества, попадающего в условия, неблагоприятные для деятельности деструкторов, захоранивается и консервируется в составе осадочных пород, поэтому синтез органических веществ в масштабе всей биосферы не полностью уравновешивается их разложением.

Эта некоторая несбалансированность процессов синтеза и разложения органических веществ в биосфере определила кислородный режим современной воздушной оболочки Земли.

Кислород атмосферы накоплен за счет фотосинтеза. Единственный источник абиогенного поступления свободного кислорода - фотодиссоциация молекул воды в верхних слоях атмосферы - очень незначителен. Количество молекул О2, выделяемых зелеными растениями, пропорционально количеству связываемых молекул СО2. Выделенный кислород вновь используется на окисление углерода при минерализации органического вещества и дыхании организмов, но так как часть органических веществ захоранивается в осадочных породах, то эквивалентное количество О2 остается в атмосфере. Значительная часть его идет на окисление минеральных веществ. С увеличением концентрации свободного кислорода в воздухе расход его на окисление минералов возрастает, с уменьшением - снижается.

В верхних слоях тропосферы под влиянием ультрафиолетового излучения из кислорода образуется озон. Существование озонового экрана также результат деятельности живого вещества, которое, по выражению Вернадского, "как бы само создает себе область жизни".

Углекислый газ поступает в атмосферу за счет дыхания всех организмов. Второй, менее мощный его источник - выделение по трещинам земной коры из осадочных пород за счет химических процессов, совершающихся под действием высоких температур; он также имеет биогенное происхождение. Часть углекислого газа поступает в атмосферу из абиогенного источника - непосредственно из мантии Земли при вулканических извержениях. Эта часть - лишь 0,01% от СО2, выделенного живыми организмами. Расходуется углекислый газ в процессах органического синтеза, а также на выветривание горных пород и образование карбонатов. Содержание СО2 в атмосфере в ранний период развития жизни было более высоким. В течение фанерозоя оно изменялось в достаточно широком диапазоне. В девоне и начале карбона, а также в перми, по новейшим подсчетам, оно превышало современный уровень в 6-10 раз, а начиная с середины мела неуклонно падает.

Азот атмосферы химически инертен, но и он участвует в процессах синтеза и распада органического вещества. Азот усваивают из атмосферы многие прокариотические организмы - азотфиксаторы; после их смерти он переходит в доступные растениям соединения и включается в цепи питания и разложения.

К газам органического происхождения относятся также сероводород, метан и множество других летучих соединений, создаваемых живым веществом. Продуцируя и потребляя газообразные вещества, организмы биосферы поддерживают постоянство состава воздушной оболочки Земли.

Живое вещество перераспределяет атомы в биосфере. Многие организмы обладают способностью накапливать, концентрировать в себе определенные элементы, несмотря на часто ничтожное содержание их в окружающей среде, например литотамниевые водоросли накапливают в своих телах до 10% магния, в раковинах брахиопод содержится около 20% фосфора, в серных бактериях - до 10% серы. Многие организмы концентрируют кальций, кремний, натрий, алюминий, йод и т.д.; отмирая и захораниваясь в массе, они образуют скопления этих веществ. Возникают залежи таких соединений, как известняки, бокситы, фосфориты, осадочная железная руда и др.

Живое вещество активно участвует также в грандиозных процессах перемещения, миграции атомов в биосфере через систему больших и малых биогеохимических циклов.

Лекция 8.



2020-02-04 232 Обсуждений (0)
Живое вещество биосферы 0.00 из 5.00 0 оценок









Обсуждение в статье: Живое вещество биосферы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (232)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)