Фазовые переходы второго рода. Критическое поведение
Исследование влияния линейных дефектов структуры на критическое поведение трехмерной модели Гейзенберга На степень бакалавра прикладных математики и физики Направление 511600 - Прикладные математика и физика Заведующий кафедрой: профессор В.В. Прудников Научный руководитель: профессор В.В. Прудников
Омск - 2010 Оглавление
Введение Глава 1. Фазовые переходы второго рода, компьютерное моделирование критического поведения 1.1 Фазовые переходы второго рода. Критическое поведение 1.2 Влияние дефектов структуры на критическое поведение 1.3 Теоретическая модель и алгоритмы компьютерного моделирования 1.3.1 Модель Гейзенберга 1.3.2 Алгоритм Вульфа 1.3.3 Метод коротковременной динамики Глава 2. Результаты моделирования критического поведения трехмерной модели Гейзенберга с линейными дефектами 2.1 Алгоритм Вульфа. Определение критической температуры 2.2 Метод коротковременной динамики. Уточнение критической температуры. Расчет критических индексов Заключение Список литературы Введение
Развитие вычислительных машин открыло новую область теоретической физики - компьютерное моделирование. Это позволяет исследовать поведение различных физических систем, описание которых традиционным способом громоздко или невозможно. В настоящее время построенная теория упорядоченных конденсированных сред существенно использует идеальность их структуры и не может быть перенесена без существенных изменений на структурно неупорядоченные системы, к которым относятся: кристаллы с примесями, сплавы, аморфные тела и др. Реальные макроскопические системы всегда содержат дефекты структуры. Важнейшими из задач остаются разработка теоретических моделей для описания поведения неупорядоченных систем и исследование их свойств экспериментальным путём. В данной работе исследуется критическое поведение ферромагнетика с примесями немагнитных атомов в виде случайно распределенных линий, т.е. с дефектами, обладающими квазидальним порядком (корреляционная функция распределения немагнитных атомов убывает по степенному закону G (r) ~ | r |-a с показателем a=2). В работе [1] проведено теоретико-полевое исследование критического поведения трехмерных систем с дальней пространственной корреляцией дефектов. В ней показано, что дефекты, обладающие свойством дальней пространственной корреляции, изменяют критическое поведение не только систем с однокомпонентным параметром порядка, но и систем с двухкомпонентным (XY-модель) и трехкомпонентным (Гейзенберговская модель) параметром порядка. Данная работа посвящена моделированию критического поведения трехмерной модели Гейзенберга с линейными дефектами. Основной целью ставилась разработка алгоритмов Метрополиса и Вольфа для данной модели, а затем определение критической температуры перехода в ферромагнитное состояние, и численное определение критических индексов характеризующих основные особенности данных неупорядоченных систем. Глава 1. Фазовые переходы второго рода, компьютерное моделирование критического поведения Фазовые переходы второго рода. Критическое поведение
Фазой называется физически однородная часть системы, отличающаяся своими физическими свойствами от других ее частей и отделённая от них четко выраженной границей [2]. Фазовый переход - это, соответственно, процесс перехода системы из одной фазы в другую. Различают фазовые переходы 1-го и 2-го рода. Основной особенностью фазовых переходов второго рода является непрерывное изменение при переходе плотности и внутренней энергии, внутренняя энергия и плотность вещества - первые производные химического потенциала, но при этом терпят разрыв теплоемкость и восприимчивость - вторые производные химического потенциала. При фазовом переходе второго рода происходит резкое нарушение симметрии системы, т.е. из высоко симметричной фазы в области высоких температур, система при охлаждении переходит в фазу с низкой симметрией. Для количественной характеристики фазовых переходов второго рода вводят понятие параметра порядка [2]. Параметром порядка называется любая макроскопическая величина, зависящая от температуры следующим образом:
где Tc - температура фазового перехода. В точке фазового перехода аномально возрастают флуктуации параметра порядка. Для выяснения характера флуктуаций вводят корреляционную функцию флуктуаций параметра порядка G, и величину, называемую корреляционной длиной Для характеристики макроскопических параметров системы, терпящих разрыв при температуре T= Tc, вводят понятие критических индексов, описывающих поведение величин вблизи критической точки [3]. Дадим общее определение критического показателя, описывающего поведение некоторой функции f (t) вблизи критической точки.
Здесь t - безразмерная переменная, измеряющая степень удаления температуры от критической. Предположим, что функция f (t) положительна и непрерывна для достаточно малых положительных значений, а также, что существует предел:
Этот предел, обозначенный буквой l, получил название критического показателя степени (или просто критического показателя), связанного с функцией f (t). Для краткости можно писать Итак, для характеристики макроскопических параметров системы вводятся: критический индекс
индекс
индексы
индексы ν для характеристики корреляционной длины:
индекс
где D - размерность системы. Можно ввести динамический критический индекс
В действительности, не все перечисленные выше критические индексы являются независимыми. Между ними существуют следующие простые соотношения:
Таким образом, чтобы полностью описать критической поведение системы в равновесии, достаточно вычислить лишь какие-либо два статических критических индекса, а оставшиеся легко выражаются через них. Для описания динамики системы необходимо знать индекс z. гейзенберг фазовый переход критический
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (319)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |