Мегаобучалка Главная | О нас | Обратная связь


Влияние дефектов структуры на критическое поведение



2020-02-03 240 Обсуждений (0)
Влияние дефектов структуры на критическое поведение 0.00 из 5.00 0 оценок




 

Реальные макроскопические системы всегда содержат дефекты структуры, например, в ферромагнитном кристалле часть ячеек может быть занята атомами, имеющими нулевой магнитный момент. Если концентрация этих атомов превышает определенную величину, ферромагнетизм полностью подавляется. Другим примером служит ситуация, когда в решетке существуют дефекты, приводящие к случайно распределенным выделенным направлениям ориентации спинов. Несмотря на это, вплоть до сравнительно недавнего времени объектами теории твердых тел были в основном свойства идеальных кристаллических систем, описание которых упрощалось благодаря симметрии решетки относительно трансляций и преобразований соответствующей точечной группы симметрии (вращений, отражений, инверсии). Построенная теория упорядоченных конденсированных сред существенно использует идеальность их структуры и не может быть перенесена без существенных изменений на неупорядоченные системы, к которым относятся: кристаллы с примесями, сплавы, аморфные тела и др.

Современная теория классифицирует примеси в зависимости от их распределения на расплавленные и замороженные. Примеси называют расплавленными, если они находятся в термодинамическом равновесии с исходным веществом. Примеси называют замороженными, если их можно рассматривать как фиксированные в некоторых положениях с распределением, обусловленным способом их внедрения в исходное вещество.

Рассмотрим влияние примесей на критическое поведение. Пусть в систему, находящуюся вблизи критической точки, ввели несколько примесей, включив тем самым малое возмущение. Отклик системы на это возмущение отражается на поведении восприимчивости и корреляционных функций. Вблизи критической точки некоторые из этих величин велики и представляют собой сингулярные функции температуры. Следовательно, малое количество примесей может привести к большим эффектам вблизи критической точки, тем самым изменяя критическое поведение системы. Корреляционная длина, описывающая упорядоченность спинов, начинает зависеть от нового параметра - среднего расстояния между примесями, она как бы рассеивается на дефектах. В результате фазовый переход 2-го рода размывается.

Узнать, влияет ли беспорядок на критическое поведение, помогает критерий Харриса. Так, в случае беспорядка с короткой пространственной корреляцией критическое поведение изменяется, если соответствующий чистой системе критический индекс αpure, характеризующий поведение теплоемкости, не отрицателен, т.е. αpure ≥ 0. Этот критерий выполняется только для изинговских систем, с одной спиновой степенью свободы. Точечные дефекты не оказывают влияния на критическое поведение многокомпонентных систем.

В случае беспорядка с квазидальней пространственной корреляцией, задаваемой корреляционной функцией g (x) ~ |x|-a, справедлив расширенный критерий Харриса - беспорядок влияет, если выполнено условие:

 

2/a > ν pure.

 

Когда атомы примеси образуют линейные дефекты, параметр корреляции дефектов a=2. В результате, для систем с линейными дефектами этот критерий выполняется для многокомпонентных систем - XY-модели и модели Гейзенберга. Следовательно, для определения характеристик критического поведения трехмерной модели Гейзенберга с линейными дефектами требуются дополнительные исследования.


Теоретическая модель и алгоритмы компьютерного моделирования

Модель Гейзенберга

В данной работе рассматривалась система с гамильтонианом вида:

 

 

где сумма берется по всем ближайшим соседям. Спины имеют три степени свободы.

Рассматривалась простая кубическая решетка линейных размеров L с периодичными граничными условиями.

При моделировании мы пользовались следующим методом, позволяющим создавать систему с дальнодействующими корреляциями дефектов: из заполненной трехмерной решетки "вычеркиваются" линии, параллельные осям координат, до достижения заданной концентрации примесей p. Чтобы кристалл был изотропен число вычеркнутых линий в каждом направлении равно. Кроме того налагается условие непересекаемости этих линий, что позволяет гарантировать существование в системе единого протекающего спинового кластера (при концентрации спинов (1-p) >pc выше порога спиновой перколяции). Это в свою очередь приводит к удалению "шума" от спинов кластеров конечного размера не дающих вклада в магнитные характеристики кристалла.

Алгоритм Вульфа

Традиционное моделирование систем взаимодействующих частиц методом Монте-Карло [4] для изучения их критического поведения наталкивается на трудности [5], связанные в основном с явлением критического замедления, потому что время корреляции, как и время релаксации, ведут себя , где . Т.е. в окрестности критической точки времена релаксации и корреляции возрастают, что приводит к существенному увеличению машинного времени, необходимого на расчет интересующих нас величин.

Поэтому моделирование системы проводилось в два этапа. На первом этапе использовался кластерный алгоритм Вольфа, для определения критической температуры, а затем в ее вблизи исследовалась коротковременная динамика системы.

В работе использовался модифицированный для трехмерной системы кластерный алгоритм Вульфа [6].

1) Выбирается случайный единичный вектор

2) Случайным образом выбираются координаты центрального спина

3) Выбранный спин зеркально отражается в плоскости перпендикулярной направлению :

4) Рассматриваются все соседи данного спина. Спин считается сонаправленным, если он лежат по одну сторону от плоскости перпендикулярной направлению  с вектором . Т.е. если

 

 

5) Такой спин переворачивается (включается в кластер) с вероятностью

.

 

6) Если спин перевернут, то аналогичным образом рассматриваются его соседи. Иначе переходим к следующему.

7) На один шаг моделирования может приходиться несколько переворотов кластера.

Алгоритм Вольфа позволяет значительно уменьшить эффекты критического замедления времени релаксации системы.

Для нахождения критической температуры в данной работе рассматривались кумулянты Биндера четвертого порядка. Выражение для кумулянта можно представить в виде:

 

 

Где скобки <…> означают статистическое усреднение, а скобки […] - усреднение по различным примесным конфигурациям. Кумулянт U (L,T) имеет важную для описания поведения конечных систем скейлинговую форму:

 

.

 

Кумулянт определен так, что 0 £ U £ 1. При этом для температур выше Tc U (L,T) ® 0 в пределе L ® ¥. Данная скейлинговая зависимость кумулянта позволяет определить критическую температуру Tc (L=¥) для бесконечной системы через координату точки пересечения кривых, задающих температурную зависимость U (L,T) для различных L. Более того, легко показать, что в критической области при T® Tc

 

 

и, следовательно, по максимальному наклону кумулянтов вблизи точки их пересечения при L®¥ можно определить значение критического индекса n, характеризующего температурную расходимость корреляционной длины при T ® Tc.

Применение кумулянтов позволяет хорошо тестировать тип фазового перехода в системе. Так, в случае фазовых переходов второго рода кривые температурной зависимости кумулянтов имеют ярко выраженную зависимость от L и некоторую область (треугольник) пересечения, близкую к точке. В случае фазового перехода первого рода кривые кумулянтов имеют специфический вид без взаимного пересечения, практически отсутствует их зависимость от размера моделируемой системы, а кумулянты в некоторой области температур принимают отрицательные значения.

 



2020-02-03 240 Обсуждений (0)
Влияние дефектов структуры на критическое поведение 0.00 из 5.00 0 оценок









Обсуждение в статье: Влияние дефектов структуры на критическое поведение

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (240)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)