Мегаобучалка Главная | О нас | Обратная связь


Защита окружающей среды от вредного воздействия ионизирующих излучений



2020-02-04 227 Обсуждений (0)
Защита окружающей среды от вредного воздействия ионизирующих излучений 0.00 из 5.00 0 оценок




 

Оценка степени опасности условий труда при работе с источниками ионизирующего излучения осуществляется с помощью ряда показателей, которые не должны превышать нормативных значений. В качестве таких показателей приняты единицы, которые с достаточной степенью точности позволяют производить однозначную оценку физических параметров поля излучения и возможных биологических последствий воздействия излучения.

Сфера использования того или иного показателя зависит от характера выполняемых работ с источниками ионизирующих излучений. При работе с закрытым источником (условия внешнего облучения), т.е. с радиоактивным источником, устройство которого исключает попадание радиоактивных веществ в окружающую среду, оценку степени опасности условий труда производят по величинам эквивалентной дозы излучения или ее мощности.

Разные виды излучений сопровождаются высвобождением разного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на ткани живого организма.

Любой источник излучения характеризуется:

видом излучения;

геометрией источника (формой и размерами);

мощностью и ее распределением по источнику;

энергетическим составом;

угловым распределением изучения.

На практике источники встречаются в неограниченном многообразии указанных характеристик.

Наиболее распространенные источники ионизирующих изучений - естественные и искусственные радиоактивные нуклиды (а их сейчас насчитывается около 2000) - являются источниками a-, b - и g-излучений [15].

Характерной особенностью этих изучений при воздействии их на живой организм является прямая или косвенная ионизация, поэтому они и называются ионизирующими излучениями.

Альфа-излучение, которое представляет собой поток тяжелых частиц, состоящих их нейтронов и протонов, задерживается листом бумаги и практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому оно не представляет опасности до тех пор, пока радиоактивные вещества, испускающие a-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом. Тогда они становятся чрезвычайно опасными. Положительно заряженные ядра гелия (a-частицы) обычно испускаются радиоактивными нуклидами с большим массовым числом (так называемыми тяжёлыми ядрами). За небольшими исключениями энергия a-частиц лежит в пределах от 4 до 10 МэВ. В этой области основным видом потерь энергии при взаимодействии их с веществом являются ионизационные потери на упругие столкновения со связанными электронами атомов среды. a-частицы обладают очень большой ионизирующей способностью, и поэтому теряют свою энергию на поглощение в сравнительно тонких слоях защиты. Ионизационные потери заряженных частиц пропорциональны числу электронов в 1 см3 поглотителя и обратно пропорциональны энергии. В отличие от γ-квантов моноэнергетические α-частицы не ослабляются в поглотителе по экспоненциальному закону. Защита от внешних потоков этого вида излучений не представляет проблемы. Слой воздуха в 10 см, тонкая фольга, лист пластиката или стекла, хирургические перчатки, одежда полностью экранируют α-частицы.

Бета-излучение обладает большей проникающей способностью: оно проходит в ткани организма на глубину один-два сантиметра. β-частицы испускаются при самопроизвольном превращении нестабильного ядра (Z) в ядро-изобар с зарядом Z+1. В процессе β-распада испускаются моноэнергетические электроны. Поскольку β-переходы происходят на различные возбуждённые состояния конечного ядра и, кроме того, часть своей энергии они теряют в результате взаимодействия с электронными оболочками собственного и соседних атомов, их спектр энергий оказывается непрерывным. Для большинства радионуклидов максимальная энергия не превышает 5 МэВ. При этом средняя энергия приблизительно равна 1/3 максимальной. Хотя проникающая способность β-частиц значительно больше, чем a-частиц, всё же здесь нет проблемы для защиты. Несколько миллиметров алюминия, плексигласа или стекла, а также одежда обычно полностью экранируют поток β-частиц. При прохождении через вещество β-частицы теряют свою энергию на ионизационные и радиационные потери. Радиационные потери приводят к образованию тормозного или рентгеновского излучения. Рентгеновское излучение требует усиленной защиты [15,17].

Проникающая способность гамма-излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.

Повреждений, вызванных в живом организме, будет тем больше, чем больше энергии оно передаст тканям. Количество такой переданной организму энергии называется дозой. Дозу излучения организм может получить от любого радионуклида или их смеси независимо от того, находятся они вне организма или внутри его (в результате попадания с пищей, воздухом или водой). Дозы можно рассчитывать по-разному. При этом учитывается размер облученного участка, чувствительность различных частей тела организма, срок распада радионуклидов, которые распадаются медленно и останутся радиоактивными и в отдаленном будущем.

Действие ионизирующего излучения в определенных дозах вызывает эффекты, которые могут стать явными у самого облученного лица или проявиться у его потомства. То есть воздействие ионизирующих излучений на организм приводит к последствиям соматической и генетической природы.

Соматические эффекты могут быть ранними (возникающими в период от нескольких минут до 60 суток после облучения) и отдаленными (соматико-стохастическими: увеличение частоты злокачественных новообразований, увеличение частоты катаракт, общее неспецифическое сокращение жизни).

В настоящее время нет единой точки зрения ученых в толковании зависимости функции доза - эффект. Если эта функция не имеет порога, то рассматриваются, скорее, не сами эффекты, а вероятность их проявления. Тогда функцию называют стохастической. Если вредные эффекты излучения выявляются, начиная с какого-то определенного порога, то функцию называют нестохастической. При дозах, характерных для практики радиационной защиты, генетические эффекты рассматриваются как стохастические. В то же время сравнительно низком диапазоне доз основной соматический эффект - карциногенез - также принято относить к стохастическим эффектам.

Нестохастические соматические эффекты характерны для отдельных органов и тканей: они проявляются в виде помутнения хрусталика глаза, незлокачественных повреждений кожи (эритемы), подавления функции клеток костного мозга, вызывающего гематологические нарушения, повреждения клеток гонад.

Внешнее облучение - воздействие на организм ионизирующих излучений от внешних по отношению к нему источников излучения.

Внутреннее облучение - воздействие на организм ионизирующих излучений радиоактивных веществ, находящихся внутри организма.

Естественный фон излучения - ионизирующее излучение, состоящее из космического излучения и излучения естественно распределенных природных радиоактивных веществ (на поверхности земли, в приземной атмосфере в продуктах питания, в воде в организме человека и другое) [18, 19].

Персонал (профессиональные работники) - лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений. К таким лицам также относятся операторы и пользователи ЭВМ. Нормы по искусственным источникам радиации приведены в таблице 9.1.

 

Таблица 9.1 - Искусственные источники радиации

Источник

Годовая доза

Доля от

природного фона,%

(до 200 мбэр)

Мбэр Мзв
Медицинские приборы (флюорография 970 мбэр, рентгенография зуба 3 бэра, рентгеноскопия легких 2-8 бэр) 100-150 1,0-1,5 50-75
Полеты в самолете (растояние 2000 км, высота 12 км) 5 раз в год 2.5-5 0.02-0.05 1-2.5
Монитор компьютера (работа по 8 часов в день) 1,0 0,01 0,5
АЭС 0,1 0,001 0,05
Глобальные осадки от испытаний ядерного оружия 2,5 0,02 1,0
Другие источники 40 - -
Итого, мбэр/год

150-200

 

Предельно допустимая доза (ПДД) - наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Допустимые уровни - нормативные значения поступления радиоактивных веществ в организм, содержание радиоактивных веществ в организме, их концентрация в воде и в воздухе, мощности дозы, плотности потока и т.п., рассчитанные из значений основных дозовых пределов ПДД.

В порядке убывания радиочуствительности устанавливаются три группы критических органов:

1 группа - все тело, гонады и красный костный мозг;

2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и другие органы, за исключением тех, которые относятся к 1-й и 3-й группам;

3 группа - кожный покров, костная ткань, кисти, предплечья, лодыжки и стопы.

Контроль мощности доз g-излучения, а также плотности потоков нейтронов позволяет оценить эффективность применяемых защитных мероприятий, ориентировочно установить индивидуальные дозы обучения, оценить надежность используемых защитных средств [15, 19].

Основными задачами контроля являются:

измерение дозы и потока нейтронов на рабочих местах;

измерение дозы g-излучения и потоков нейтронов в смежных помещениях и прилегающей территории;

измерение эффективности стационарных и передвижных защитных средств;

установление контрольных уровней;

установление радиационно-опасных зон при аварии.

Для измерений мощности дозы g-излучения и плотности потоков нейтронов применяют различные дозиметры стационарного, переносного или носимого типов.

Детекторами излучения служат ионизационные камеры, газоразрядные или сцинтилляционные счетчики.

Стационарные приборы позволяют вести непрерывный контроль мощности доз во многих точках помещений, где проводятся работы с источниками ионизирующих излучений, и имеют большие диапазоны измерений.

Наряду со стационарными приборами измерения мощности экспозиционных доз рентгеновского, g-излучений и потоков нейтронов осуществляют с помощью переносных дозиметров и радиометров, а также носимых дозиметров.

Существуют следующие приборы контроля ДРГЗ-01, ДРГЗ-ОЗ, ДКС-05-, ДКС-04 и др.

По мнению Международной комиссии по ионизационной защите “целью ионизационной защиты является обеспечение защиты от вредоносного воздействия ионизирующих излучений отдельных индивидуумов, их потомства, человечества в целом и в то же время создание соответствующих условий для необходимой практической деятельности человека, во время которой возможно воздействие ионизирующих излучений" [16].

Воздействие ионизирующих излучений на организм приводит к последствиям соматической и генетической природы. Соматические эффекты проявляются непосредственно у человека, подвергающегося облучению, а генетические - у его потомков. Соматические эффекты могут быть ранними (возникающими в период от нескольких минут до 60 суток после облучения) и отдаленными (соматико-стохастическими: увеличение частоты злокачественных новообразований, увеличение частоты катаракт, общее неспецифическое сокращение жизни).

Конкретной целью ионизационной защиты является предупреждение вредных нестохастических эффектов и ограничение частоты соматико-стохастических эффектов до уровня, считающегося приемлемым. Нестохастические эффекты могут быть устранены установлением достаточно низкого предела эквивалентной дозы таким образом, чтобы минимальная доза, способная вызвать повреждения, не была достигнута в течение трудовой деятельности человека.

Для ближайшего будущего разумный метод определения приемлемости риска при работе, связанной с источниками излучений, заключается в сравнении оценки этого риска с риском при работе в других областях деятельности, которые признаются минимально безопасными.

Для оценки воздействия изучения применяют так называемый параметр риска R, равный средней индивидуальной вероятности смерти в результате облучения в дозе 10 мЗв. Между параметром риска и ожидаемым числом случаев смерти n существует простая связь:

 

 (9.1)

 

Параметр риска в зависимости от типа отдаленных последствий колеблется в широких пределах. Параметр риска приведен в таблице 9.2.


Таблица 9.2 - Параметр риска

Отдаленные последствия Параметр риска, чел-бэр
Лейкемия 2·10-5
Рак щитовидной железы 5·10-6
Опухоли костной ткани 5·10-6
Опухоли легких 2·10-5
Опухоли других органов и тканей 5·10-5
Все злокачественные опухоли 1.25·10-4
Наследственные дефекты 4·10-5

 

По современным оценкам среднегодовая смертность от профессиональных причин, включая несчастные случаи на производствах, не превышает 104 случаев в год.

Для реализации главной цепи радиационной защиты достижения и сохранения необходимых условий радиационной безопасности при всех видах деятельности, где предполагается облучение человека, - вводятся основные дозовые пределы. Используя их, рассчитываются производственные характеристики, такие, как предельно допустимые уровни внешних потоков ионизирующих изучений и допустимые концентрации радионуклидов в воде и воздухе.

Материалы, располагаемые между источником излучения и зоной размещения персонала или оборудования для ослабления потоков ионизирующих излучений, называют защитой.

Защиту от ионизирующих излучений классифицируют по:

назначению;

типу;

компоновке;

геометрии.

Защита от ионизирующих изучений должна обеспечивать:

а) допустимый уровень облучения обслуживающего установку персонала;

б) допустимый уровень радиационных повреждений “изменение прочностных характеристик, разрушение органических соединений, радиолиз воды и другие” конструкционных и защитных материалов;

в) допустимый уровень радиационного энерговыделения и температурного распределения в конструкционных и защитных материалах.

В соответствии с этим защиту подразделяют соответственно на:

биологическую;

радиационную;

тепловую.

Радиационная и тепловая защиты, которые конструктивно часто бывают совмещены, необходимы только для мощных источников изучения ядерно-технических установок, таких, например, как ядерные реакторы. При работе с изотопными источниками нео6ходимость в радиационной и тепловой защите обычно не возникает.

Защиты подразделяются на следующие типы:

сплошная защита, целиком окружающая источники излучения;

раздельная защита, когда наиболее мощные источники излучения окружает первичная защита (например, первичная защита активной зоны ядерного реактора), а между первичной и вторичной защитой имеются также источники излучения (например, система теплоносителя ядерного реактора);

теневая защита устанавливается между источником излучения и защищаемой областью, размеры которой ограничиваются лишь “тенью", “отбрасываемой” защитой. Особенно часто такая защита используется при ограничении массы и габаритов;

частичная защита - ослабленная защита для областей ограниченного доступа персонала, например, на судне с реактором в качестве энергетической установки частичная защита может осуществляться в направлении дна.

По компоновке выделяют гомогенную (из одного защитного материала) и гетерогенную (из различных материалов) защиты.

По форме внешней поверхности наиболее часто на практике встречается плоская, сферическая и цилиндрическая защиты.

По распространению нейтронов в средах можно выделить следующие группы материалов:

легкие водородосодержащие (водород, вода, полиэтилен, гидриды металлов) - эффективные замедлители нейтронов;

легкие, не содержащие водород (углерода карбид бора), используемые при технических или технологических ограничениях на введение в защиту водородосодержащих сред;

материалы, состоящие из элементов со средним атомным номером (бетон, породы, минералы);

тяжелые материалы (железо, свинец, молибден, вольфрам, титан) для снижения потоков g-квантов (улучшают свойства защиты от быстрых нейтронов благодаря высоким сечениям неупругого рассеяния этих элементов);

металловодородосодержащие среды.

Водород как материал защиты не представляет практического интереса, но как элемент он является хорошим замедлителем нейтронов и главным компонентом в большинстве защит от нейтронов. Барьерная защита из водорода обладает наилучшими защитными свойствами от нейтронов, отнесенными к единице массы. Вода - это наиболее часто используемый в защите водородосодержащий материал. Это обусловлено высокой ядерной плотностью водорода в воде, невысокой стоимостью, легкодоступностью, способностью заполнять все отведенное для нее пространство без образования щелей, пустот и раковин в защите. Характеристики ослабления нейтронного излучения в воде рассчитаны и измерены достаточно полно [17,18].




2020-02-04 227 Обсуждений (0)
Защита окружающей среды от вредного воздействия ионизирующих излучений 0.00 из 5.00 0 оценок









Обсуждение в статье: Защита окружающей среды от вредного воздействия ионизирующих излучений

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (227)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)