Мегаобучалка Главная | О нас | Обратная связь


Адаптивные методы прогнозирования



2020-02-04 400 Обсуждений (0)
Адаптивные методы прогнозирования 0.00 из 5.00 0 оценок




Считается, что характерной чертой адаптивных методов прогнозирования является их способность непрерывно учитывать эволюцию динамических характеристик изучаемых процессов, «подстраиваться» под эту эволюцию, придавая, в частности, тем больший вес и тем более высокую информационную ценность имеющимся наблюдениям, чем ближе они к текущему моменту прогнозирования. Однако деление методов и моделей на «адаптивные» и «неадаптивные» достаточно условно. В известном смысле любой метод прогнозирования адаптивный, т.к. все они учитывают вновь поступающую информацию, в том числе наблюдения, сделанные с момента последнего прогноза. Общее значение термина заключается, по видимому, в том, что «адаптивное» прогнозирование позволяет обновлять прогнозы с минимальной задержкой и с помощью относительно несложных математических процедур. Однако это не означает, что в любой ситуации адаптивные методы эффективнее тех, которые традиционно не относятся к таковым. Постановка задачи прогнозирования с использованием простейшего варианта метода экспоненциального сглаживания формулируется следующим образом.

Пусть анализируемый временной ряд  представлен в виде

 

(3.19)

 

где a0 − неизвестный параметр, не зависящий от времени, а ετ − случайный остаток со средним значением, равным нулю, и конечной дисперсией.

Как известно, экспоненциально взвешенная скользящая средняя ряда xτ в точке xt(λ) с параметром сглаживания (параметром адаптации)  определяется формулой

 

(3.20)

 

которая дает решение задачи:

 

(3.21)

 

Коэффициент сглаживания λ можно интерпретировать также как коэффициент дисконтирования, характеризующий меру обесценения наблюдения за единицу времени.

Для рядов с «бесконечным прошлым» формула (3.20) сводится к виду


(3.22)

 

В соответствии с простейшим вариантом метода экспоненциального сглаживания прогноз  для неизвестного значения xt+1 по известной до момента времени t траектории ряда xt строится по формуле

 

(3.23)

 

где значение  определено формулой (3.20) или (3.22), соответственно для короткого или длинного временного ряда.

Формула (3.23) удобна, в частности, тем, что при появлении следующего (t+1)-го наблюдения xt-1 пересчёт прогнозирующей функции  производится с помощью простого соотношения

Метод экспоненциального сглаживания можно обобщить на случай полиномиальной неслучайной составляющей анализируемого временного ряда, т.е. на ситуации, когда вместо (3.19) постулируется

 

(3.24)

 

где k ≥ 1. В соотношении (3.24) начальная точка отсчета времени сдвинута в текущий момент времени t, что облегчает дальнейшие вычисления. Соответственно, в схеме простейшего варианта метода прогноза  значения xt+1 будут определяться соотношениями (3.24). Рассмотрим еще несколько методов, использующих идеологию экспоненциального сглаживания, которые развивают метод Брауна в различных направлениях.


Метод Хольта

Хольт ослабил ограничения метода Брауна, связанные с его однопараметричностью, введением двух параметров сглаживания в его модели прогноза  и , на l такт времени в текущий момент t также определяется линейным трендом вида

 

(3.25)

 

где обновление прогнозирующих коэффициентов производится по формулам

 

 (3.26)

 

Таким образом, прогноз по данному методу является функцией прошлых и текущих данных, параметров  и , а также начальных значений  и .

Метод Хольта-Уинтерса

Уинтерс развил метод Хольта так, чтобы он охватывал еще и сезонные эффекты. Прогноз, сделанный в момент t на l такт времени вперед, равен

 

(3.27)

 

где ωτ − коэффициент сезонности, а N − число временных тактов, содержащихся в полном сезонном цикле. Сезонность в этой формуле представлена мультипликативно. Метод использует три параметра сглаживания  а его формулы обновления имеют вид

 

(3.28)

 

Как и в предыдущем случае, прогноз строится на основании прошлых и текущих значений временного ряда, параметров адаптации , и , а также начальных значений и

 

3.2.3 Аддитивная модель сезонности Тейла−Вейджа

В экономической практике чаще встречаются экспоненциальные тенденции с мультипликативно наложенной сезонностью. Поэтому перед использованием аддитивной модели члены анализируемого временного ряда обычно заменяют их логарифмами, преобразуя экспоненциальную тенденцию в линейную, а мультипликативную сезонность в аддитивную. Преимущество аддитивной модели заключается в относительной простоте ее вычислительной реализации. Рассмотрим модель вида (в предположении, что исходные данные прологарифмированы) где a0(τ) − уровень процесса после элиминирования сезонных колебаний, a1(τ) − аддитивный коэффициент роста, ωt − аддитивный коэффициент сезонности, δt − белый шум.

Прогноз, сделанный в момент t на l временной такт вперед, подсчитывается по формуле

 

(3.29)


где коэффициенты ,  и ω вычисляются рекуррентным образом с помощью следующих формул обновления

 

(3.30)

 

В этих соотношениях, как и прежде, N − число временных тактов, содержащихся в полном сезонном цикле, а , и  − параметры адаптации.




2020-02-04 400 Обсуждений (0)
Адаптивные методы прогнозирования 0.00 из 5.00 0 оценок









Обсуждение в статье: Адаптивные методы прогнозирования

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (400)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)