Мегаобучалка Главная | О нас | Обратная связь


В.2 ХАРАКТЕРИСТИКА ОБЪЕКТА И ИСХОДНОЙ ИНФОРМАЦИИ 2 страница



2020-02-04 178 Обсуждений (0)
В.2 ХАРАКТЕРИСТИКА ОБЪЕКТА И ИСХОДНОЙ ИНФОРМАЦИИ 2 страница 0.00 из 5.00 0 оценок




 n – количество квартир, присоединенных к линии (ТП).

 

Pкв. = 1,23*467 = 593,1 кВт

Qкв. = 593,1 * 0,95 = 563,4 кВар

 


Расчетная, активная и реактивная нагрузки линий питания лифтовых установок Pр. лиф.,  кВт; Qр. лиф.,  кВар; определяются по формулам:

 

Pр. лиф. = ∑ Pn. i. * Kс. лиф.                                                                        (1.3.)

Qр. лиф. = Pр. лиф. * Cos φлиф.                                                          (1.4.)

 

Где Kс. лиф. – коэффициент спроса, определяемый по таблице 2.1.2. [6] в зависимости от количества лифтовых установок и этажности зданий;

Pn. i. – установленная мощность i-го лифта, кВт

 

Pр. лиф. = 9 * 5 * 0,5 = 22,5 кВт

Qр. лиф. = 22,5 * 0,85 = 19,1 кВар

 

Расчетная, активная и реактивная электрические нагрузки жилых домов (квартир и силовых электроприемников) Pр.ж.д,  кВт; Qр.ж.д,  кВар, определяется по формулам;

 

Pр.ж.д = Pкв + kу Pр. лиф.                                                                                                                (1.5.)

Qр.ж.д = Qкв + kу Qр. лиф.                                                               (1.6.)

 

где Pкв – расчетная электрическая нагрузка квартир, кВт;

Pр. лиф. – расчетная активная нагрузка силовых электроприемников жилого дома, (лифтов) кВт;

Qр. лиф. – расчетная реактивная нагрузка силовых электроприемников жилого дома, (лифтов) кВт;

kу – коэффициент участия в максимуме нагрузки силовых электроприемников (равен 0,9).

 

Pр.ж.д = 593,1 + 0,9 * 22,5 = 613,4 кВт

Qр.ж.д. = 563,4 + 0,9 * 19,1 = 580,6 кВар

Расчетная активная и реактивная электрические нагрузки на вводе подстанции до 1 кВ при смешанном питании потребителей жилых домов и общественных зданий (помещений), Рп/с., кВт; Qп/с., кВар,  определяются по формулам:

 

Рп/с. = Рр.ж.з. + ∑ ΔР                                                           (1.7.)

Qп/с. = Qр. ж. з. + ∑ ΔР * Cos φоб. зд.                                     (1.8.)

 

Где ΔР = Ро.з. * kу – мщность общественных зданий умноженная на коэффициент участия в максимуме нагрузок общественных зданий по таблице 42.7 [ 7 ].

 

Рп/с. = 613,4 + 57,9 = 671,3 кВт

Qп/с. = 740,1 + 46,3 * 0,9 = 622,3 кВар

 

Полная мощность на вводе подстанции,  Sп/с.,  кВА,  определяется по формуле:

 


Sп/с. = √ Рп/с.² + Qп/с.²  (1.9.)

Sп/с. = √ 671,3² + 622,3² = 915,4 кВА

 

Таблица 1.9.

Расчет электрических нагрузок

№ п/п Наименование P п/с, кВт Q п/с, кВар S п/с, кВА
1 ТП – 1 671,3 622,3 915,4
2 ТП – 2 554,2 469,7 726,5
3 ТП – 3 215 169,3 273,6
4 ТП – 4 791,5 672,2 1038,4
5 ТП – 5 656,3 492,7 820,6
6 ТП – 6 410,3 309,2 513,8
7 ТП – 7 119,9 85,6 147,3
8 ТП – 8 96,3 66,4 116,9

1.3 РАСЧЕТ ЭЛЕКТРИЧЕСКОЙ СЕТИ

 

1.3.1 ВЫБОР ЧИСЛА И МОЩНОСТИ ТРАНСФОРМАТОРОВ

Основным критерием выбора оптимальной мощности трансформаторов являются: экономические соображения, обеспечивающие минимум приведённых затрат, условия нагрева, зависящие от температуры, коэффициента начальной загрузки, длительности максимума.

От правильного размещения подстанций на территории массовой жилой застройки города, а также числа подстанций и мощности трансформаторов, установленных в каждой подстанции, зависят экономические показатели и надежность системы электроснабжения потребителей. Трансформаторные подстанции следует приблизить к центру питаемых ими групп потребителей, так как при этом сокращается протяжонность низковольтных сетей, снижаются сечения проводов и жил кабелей, а это приводит к значительной экономии цветных металлов и снижению потерь энергии. Снижаются также капитальные затраты на сооружение сетей. Поэтому система с мелкими подстанциями (мощность отдельных трансформаторов обычно не превышает 1000 кВА при вторичном напряжении сети 0,4/0,23 кВ) оказывается выгодной и применяется повсеместно [ 5 ].

Количество силовых трансформаторов на трансформаторной подстанции зависит от категории нагрузки по степени бесперебойности электроснабжения. Основная часть потребителей электроэнергии относится к 2-й категории по надёжности электроснабжения. Часть потребителей электроэнергии относятся к потребителям 3-й категории.

Принимается двухтрансформаторная КТП с использованием масляных трансформаторов.

Мощность каждого трансформатора должна быть такой, чтобы при отключении одного из трансформаторов оставшейся в работе обеспечивал электроэнергией потребителей 1 и 2 категорий. За основу выбора берётся перегрузочная способность трансформаторов. Обычно в практике проектирования пользуются перегрузочной способностью для потребителей, работающих по двухсменному режиму раборы, а жилые районы можно отнести к таким режимам работы, так как днем загруженность заключается в работающих магазинах, школах, детских садах и т. д., а вечером в жилых домах. Перегрузочная способность заключается в следующем: при выходе из строя одного из трансформаторов второй трансформатор может нести перегрузку величиной 40% в течении 6-и часов в сутки 5 рабочих дней недели.

Выбор трансформаторов будем производить на примере трансформаторной подстанци № 1 (ТП–1), остальные расчеты аналогичны, результаты расчетов сводим в таблицу 1.11.

 

Мощность трансформатора определяется по формуле:

 

Sнагр.

Sтр. =                                                                                 (1.10.)

Кз. * n

 

где, Sнагр. – расчетная мощность нагрузки ТП.

n – количество трансформаторов на подстанции. n = 2

Кз. – коэффициент загрузки трансформатора. Кз. = 0.7

 

        606.99

 Sтр. =                  = 433.56кВА

          0,7*2

 

Выбираем ближайшый больший по мощности трансформатор:

ТМ-630/10

Sном =630кВА

ΔРхх=1.3кВт.

ΔРкз=7.8 кВт.

Uкз = 5.5%

Iхх =2%

Проверяем перегрузочную способность трансформаторов в аварийном режиме: 1,4 * Sномт ≥ Sp

 

1,4 * 630 = 882 > 606

 

Условие выполняется.

 

Таблица 1.10.

Выбор трансформаторов

№ п/п Т.П. Трансформатор Sном., кВА ΔPх.х, кВт ΔPк.з., кВт Uк.з., % Iх.х., %
1 ТП – 1 Т1.1. TM- 630/10 630 1.3 7.6 5,5 2
2 ТП – 1 Т1.2.TM- 630/10 630 1.3 7.6 5,5 2
3 ТП – 2 Т2.1. ТМ-630/10 630 1.3 7.6 5,5 2
4 ТП – 2 Т2.2. ТМ-630/10 630 1.3 7,6 5,5 2
5 ТП – 3 Т3.1. ТМ-400/10 400 0.95 5.5 4.5 2.1
6 ТП – 3 Т3.2. ТМ-400/10 400 0.95 5.5 4.5 2.1
7 ТП – 4 Т4.1. ТМ-630/10 630 1.3 7.6 5,5 2
8 ТП – 4 Т4.2. ТМ-630/10 630 1.3 7.6 5,5 2
9 ТП – 5 Т5.1. ТМ-400/10 400 0.95 5.5 4.5 2.1
10 ТП – 5 Т5.2. ТМ-400/10 400 0.95 5.5 4.5 2.1
11 ТП – 6 Т6.1. ТМ-400/10 400 0.95 5.5 4.5 2.1
12 ТП – 6 Т6.2. ТМ-400/10 400 0.95 5.5 4.5 2.1
13 ТП – 7 Т7.1. ТМ-630/10 630 1.3 7.6 5,5 2
14 ТП – 7 Т7.2. ТМ-630/10 630 1.3 7.6 5,5 2
15 ТП – 8 Т8.1. ТМ-630/10 630 1.3 7.6 5,5 2
16 ТП – 8 Т8.2. ТМ-630/10 630 1.3 7.6 5,5 2

 


1.3.2 РАСЧЕТ СЕЧЕНИЯ ЛЭП

Критерием расчета сечения линий электропередачи является:

1. длительно допустимый ток Iдоп;

2 экономическая плотность тока Iэк;

3. допустимая потеря напряжения.

В сетях выше 1000 В расчёт сечений ведётся по первым двум условиям, а в сетях до 1000 В расчётным условием является – длительно допустимый ток и допустимая потеря напряжения.

 

Рассчитываем значение тока:

           Sрасч. * Ко

 Iрасч. =                                                                              (1.11.)

           √3 *Uв. н.

 

Где: Sрасч. – мощность всех подстанций кольца.

Ко – коэффициент одновременности для электрических нагрузок в сетях 6 – 20 кВ учитывающий количество ТП [8].

 

                3361.1

Iрасч.L1. =                       = 194.3А

              √ 3 * 10

 

Все проводники электрической сети проверяют по допустимому нагреву током нагрузки Для выбора сечений и проверки проводов и кабелей пользуются таблицами приведёнными в ПУЭ. Для этого сопоставляют расчетные токи элементов сети с длительно допустимыми токами, приведёнными в таблицах для проводов и кабелей. Необходимо выдержать соотношение

 

Iрасч. ≤ Iдоп.


где: Iрасч. – расчетный ток нагрузки, А;

Iдоп. – предельно допустимый ток для данного сечения проводника, А.

По данным справочной литературы выбираем бронированный трехжильный кабель с алюминиевыми жилами и бумажной изоляцией, пропитанной маслоканифольной и не стекающей массами, в свинцовой или алюминиевой оболочке. ААБл (3 *95) Sкаб. = 95 мм2 Iдл. =205А

 

194,3≤ 205

 

Условие выполняется.

При проектировании электрических сетей важно обеспечить наименьшую стоимость электроэнергии. Это зависит от выбранных сечений проводов. Если их занизить, то потери энергии возрастут, а если увеличить – уменьшится стоимость потерянной энергии, однако это приводит к росту капитальных первоначальных затрат на сооружение сети. Сечение, соответствующее минимуму стоимости передачи электроэнергии, называют экономическим

 

Sэ. ≤ Sкаб., мм²

 

Экономическая плотность тока является функцией двух переменных: числа часов использования максимальной нагрузки Тм и материала проводника. По справочной литературе для Тм = 5000 часов и материала проводника – алюминий, определим экономическую плотность тока jэк. = 2,5А/мм2,  тогда расчётное значение экономического сечения линий равно:

 

       Iрасч.

 Sэ. =                                                                                     (1.12.)

         Jэк.

 

где: Iрасч. – расчетный ток линии.

Jэ. – экономическая плотность тока.

Это условие определено для работы схемы на одной линии и двух трансформаторах находящихся в работе.

 

         194,3

Sэ. =                   = 77,8мм²

            2,5

 

Bыбираем сечение кабеля исходя из условия экономической плотности тока ближайшее к расчетному. Кабель ААБл (3*70),  Sкаб. = 70 мм²,  Iдлит. = 165 А.

 

165А < 250А

 

Тaк как длительно допустимый ток выбранного кабеля по экономической плотности меньше расчетного тока при выборе кабеля по длительно допустимрму току то принемаем к прокладке в земле ранее выбранный кабель, ААБл (3*95).

Таблица 1.11.

№ линии Марка кабеля Sр.,  кВА Iр., А Sэ.,  мм² Iр., А Sк.,  мм² Iдоп.к.,  А Rуд.,  Ом/км Xуд.,  Ом/км Lлин, км
1.1. ААБл-10 (3*95) 3361,3 194,3 77,8 165 95 205 0,329 0,083 0,3
1.2. ААБл-10 (3*95) 3026,06 174,9 69,9 140 95 205 0,329 0,083 0,2
1.3. ААБл-10 (3*70) 2526,3 146 58,4 140 70 165 0,447 0,086 0,15
1.4. ААБл-10 (3*50) 2122,8 122,7 49,08 115 50 140 0,625 0,09 0,2
1.5. ААБл-10 (3*50) 1678,3 97 38,8 90 50 140 0,625 0,09 0,15
1,6. ААБ (3*35) 1317,36 76 30,4 90 35 115 0,894 0,095 0,1
1,7 ААБ (3*25) 970,16 56 22,4 75 25 90 1,25 0,099 0,15
1,8 ААБ (3*16) 388,1 22,4 8,96   16 75 1,95 0,113 0,2
1,9 ААБл-10 (3*95) 3361,3 194,3 77,8 165 95 205 0,329 0,083 0,3

 

 

1.3.3 ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Трансформаторные подстанции подключаются к сборным шинам 10 кВ РП с вакуумными выключателями, установленными в ячейках серии КРУ.

Все апараты выбираются по следующим условиям:

· по напряжению – Uном. ³ Uсети.

· по номинальному току – Iном. > Iрасч.;

Где Uсети = 10 кВ.

 

             Sр.

Iр. = —————

     √ 3 * Uсети.

 

Выбираем оборудование РП 10 кВ.

Выбираем к установке вакуумные выключатели. Основные достоинства вакуумных выключателей, определяющие их широкое применение:

 1 Высокая износостойкость при коммутации номинальных токов и номинальных токов отключения. Число отключений номинальных токов вакуумным выключателем (ВВ) без замены ВДК составляет 10-20 тыс., число отключений номинального тока отключения – 20-200, что в 10-20 раз превышает соответствующие параметры маломасляных выключателей.

2 Резкое снижение эксплуатационных затрат по сравнению с маломасляными выключателями. Обслуживание ВВ сводится к смазке механизма привода, проверке износа контактов по меткам один раз в пять лет или через 5-10 тысяч циклов «включений – отключений».

3 Полная взрыво- и пожаробезопасность и возможность работать в агрессивных средах.

4 Широкий диапазон температур окружающей среды, в котором возможна работа ВДК.

5 Повышенная устойчивость к ударным и вибрационным нагрузкам в следствие малой массы и компактной конструкцией аппарата.

6 Произвольное рабочее положение и малые габариты, что позволяет создавать различные компоновки распределительных устройств, в том числе и шкафы с несколькими выключателями при двух-трехярусном их расположении.

7 Бесшумность, чистота, удобство обслуживания, обусловленные малым выделением энергии в дуге и отсутствием выброса масла, газов при отключении токов КЗ.

9 Отсутствие загрязнения окружающей среды.

10 Высокая надежность и безопасность эксплуатации, сокращение времени на монтаж.

К недостаткам ВВ следует отнести повышенный уровень коммутационных перенапряжений, что в ряде случаев вызывает необходимость принятия специальных мер по защите оборудования [ 10 ].

Основные технические характеристики ваккуумных выключателей сводим в таблицу 1.12.

 

Таблица 1.12.

Выбор ваккуумных выключателей

№ Выкл Тип выкл. Iрасч.,  А Uном., кВ Uнаиб. раб.,  кВ Iном.,  А Iтер. стой.,  А tдоп. (Iтер. стой), А Iдин. стой., А
Q1.1. ВВЭ-10-20/630У3 194,3 10 12 630 20 3 52
Q1.2. ВВЭ-10-20/630У3 194,3 10 12 630 20 3 52

 

Выбираем оборудование трансформаторных подстанций ТП 10/0,4 кВ на стороне высокого напряжения.

·  Выбор выключателей нагрузки.(QW)

Выключатель нагрузки является промежуточным аппаратом между выключателем и разъеденителем. Он не расчитан на отключение тока КЗ, но может включать и отключать рабочие токи линий, трансформаторов и других электроприёмников. Основные технические характеристики сводим в таблицу 1.13.

Таблица 1.13.

Выбор выключателей нагрузки. (QW)

№ Выкл. по сх. Тип выключателя. Iрасч.,  А Uном.,  кВ Iном., А Iтер. стой., кА tдоп. (Iтер. стой), с Iдин. стой., А
1.1. ВНПу-10/400-10зУ3 194,3 10 400 10 1 25
1.2 ВНПу-10/400-10зУ3 174 10 400 10 1 25
2.1. ВНПу-10/400-10зУ3 174 10 400 10 1 25
2.2. ВНПу-10/400-10зУ3 146 10 400 10 1 25
3.1. ВНПу-10/400-10зУ3 146 10 400 10 1 25
3.2 ВНПу-10/400-10зУ3 122,7 10 400 10 1 25
4.1. ВНПу-10/400-10зУ3 122,7 10 400 10 1 25
4.2 ВНПу-10/400-10зУ3 97 10 400 10 1 25
5.1. ВНПу-10/400-10зУ3 97 10 400 10 1 25
5.2 ВНПу-10/400-10зУ3 76 10 400 10 1 25
6.1. ВНПу-10/400-10зУ3 76 10 400 10 1 25
6.2. ВНПу-10/400-10зУ3 56 10 400 10 1 25
7,1 ВНПу-10/400-10зУ3 56 10 400 10 1 25
7,2 ВНПу-10/400-10зУ3 22,4 10 400 10 1 25
8.1 ВНПу-10/400-10зУ3 22,4 10 400 10 1 25
8.2 ВНПу-10/400-10зУ3 194,3 10 400 10 1 25

 

· Выбирам разъеденители (QS):

В данной схеме разъеденители используются для переключений присоединений РУ с одной системы сборных шин на другую без перерыва тока и для отключения и включения ненагруженных трансформаторов. Разъеденители выбирают по мощности ТП; данные сводим в таблицу 1.9.

 

Таблица 1.14.

Выбор разъеденителей (QS)

№ ТП. № Разъед. по сх. Тип разъеденителя. Iрасч.,  А Uном.,  кВ Iном., А Iтер. стой., кА tдоп. (Iтер. стой), с Iдин. стой., А
ТП – 1 QS1 РВЗ – 10/400 У3 194,3 10 400 16 4 41
ТП – 2 QS2 РВЗ – 10/400 У3 174 10 400 16 4 41
ТП – 3 QS3 РВЗ – 10/400 У3 146 10 400 16 4 41
ТП – 4 QS4 РВЗ – 10/400 У3 122,7 10 400 16 4 41
ТП – 5 QS5 РВЗ – 10/400 У3 97 10 400 16 4 41
ТП – 6 QS6 РВЗ – 10/400 У3 76 10 400 16 4 41
ТП – 7 QS7 РВЗ – 10/400 У3 56 10 400 16 4 41
ТП – 8 QS8 РВЗ – 10/400 У3 22,4 10 400 16 4 41

 

· Предохранители:

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основанно на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги. Ценными свойствами плавких предохранителей являются:

1. простота устройства и, следовательно, низкая себестоимость;

2. исключительно быстрое отключение цепи при К.З.;

3. способность предохранителей некоторых типов ограничивать ток К.З. [9 ].

 

Предохранители ПК, заполненные чистым кварцевым паском, применяются на закрытых подстанциях напряжением 6 – 10 кВ малой и средней мощностей и на маломощных ответвлениях на крупных подстанциях. Предохранители ПК являются токоограничивающими, так как при больших токах КЗ отключаются до достижения амплитудного значения тока К.З. [10].

Основные технические характеристики предохранителей сводим в таблицу 1.15.

 

Таблица 1.15.

Выбор предохранителей (FU)

№ ТП. № Предохранит. Марка предохранителя Uном.,  кВ Uнаиб. раб.,  кВ Iрасч.,  А Iном.,  А Iном. откл,  кА
ТП – 1 1.1.; 1.2. ПКТ 103-10-80-20У3 10 12 35 80 20
ТП – 2 2.1.; 2.2. ПКТ 103-10-80-20У3 10 12 37 80 20
ТП – 3 3.1.; 3.2. ПКТ 103-10-80-20У3 10 12 29,5 80 20
ТП – 4 4.1.; 4.2. ПКТ 103-10-80-20У3 10 12 34,15 80 20
ТП – 5 5.1.; 5.2. ПКТ 103-10-80-20У3 10 12 26,98 80 20
ТП – 6 6.1.; 6.2. ПКТ 103-10-80-20У3 10 12 27,14 80 20
ТП – 7 7.1.; 7.2. ПКТ 103-10-80-20У3 10 12 43,9 80 20
ТП – 8 8.1.; 8.2. ПКТ 103-10-80-20У3 10 12 37,4 80 20

 

1.4 ПРОВЕРКА ОБОРУДОВАНИЯ НА ДЕЙСТВИЕ ТОКОВ К.З.

 

В качестве исходной информации задано установившееся значение 3-х фазного К.З. на шинах 10,5 кВ РП.

Iк.з. = 10 кА.

В рассматриваемой схеме на действие токов К.З. должны быть проверены :

· вакуумные выключатели, выключатели нагрузки, разъеденители;

· кабель (на термическое действие).

1. Условием проверки аппаратов на электродинамическую устойчивость токам К.З. является:

 

iуд. £ iдин. = Iскв.



2020-02-04 178 Обсуждений (0)
В.2 ХАРАКТЕРИСТИКА ОБЪЕКТА И ИСХОДНОЙ ИНФОРМАЦИИ 2 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: В.2 ХАРАКТЕРИСТИКА ОБЪЕКТА И ИСХОДНОЙ ИНФОРМАЦИИ 2 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (178)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)