Мегаобучалка Главная | О нас | Обратная связь


Возможно ли путешествие во времени?



2020-02-04 164 Обсуждений (0)
Возможно ли путешествие во времени? 0.00 из 5.00 0 оценок




 

В научной фантастике искривление пространства и времени – обычное дело. Его используют для быстрого перемещения по Галактике или для путешествий во времени, но научная фантастика сегодняшнего дня зачастую становится научным фактом дня завтрашнего. Так каковы шансы путешествий во времени?

Идея о том, что пространство и время могут искривляться, или искажаться, возникла совсем недавно. Более двух тысяч лет аксиомы эвклидовой геометрии считались самоочевидными. Те из вас, кому приходилось учить геометрию в школе, могут помнить одно из следствий этих аксиом: сумма углов треугольника равна 180 градусам.

Тем не менее в прошлом веке люди начали понимать, что возможны и другие представления о геометрии и что сумма углов треугольника не обязательно должна составлять 180 градусов. Возьмем, к примеру, поверхность Земли. Максимально приближенная к прямой линия на поверхности Земли называется «большим кругом». Это кратчайший путь между двумя точками, поэтому именно так прокладывают дальние маршруты пассажирских авиалайнеров. Представим теперь треугольник на поверхности Земли, сторонами которого будут экватор, нулевой меридиан, проходящий через Лондон, и меридиан в 90 градусов восточной долготы, проходящий через Бангладеш. Эти два меридиана пересекают экватор под прямым углом в 90 градусов. На Северном полюсе они тоже встречаются под углом в 90 градусов. Таким образом, получается треугольник с тремя прямыми углами. Сумма их составляет, как нетрудно посчитать, 270 градусов, что гораздо больше суммы углов треугольника, прочерченного на плоскости. А если нарисовать треугольник на седлообразной поверхности, может оказаться, что сумма его углов будет меньше 180 градусов.

Поверхность Земли – это двумерное пространство. То есть вы можете перемещаться по поверхности Земли в двух направлениях, расположенных под прямым углом друг к другу: в направлении с севера на юг или с востока на запад. Разумеется, есть и третье направление, расположенное под прямым углом к этим двум: направление вверх-вниз. Иными словами, поверхность Земли существует в трехмерном пространстве. Трехмерное пространство плоское. Можно сказать, оно подчиняется законам эвклидовой геометрии. Сумма углов треугольника составляет 180 градусов. Однако давайте вообразим расу двумерных существ, которые могут перемещаться по поверхности Земли, но не могут освоить третье измерение – вверх-вниз. Они не подозревают о плоском трехмерном пространстве, в котором находится поверхность Земли. Для них пространство должно быть искривлено, а геометрия – неэвклидовой.

Но так же как можно вообразить двумерных существ, обитающих на поверхности Земли, можно представить, что трехмерное пространство, в котором мы живем, является поверхностью сферы в другом измерении, которого нам не видно. Если сфера очень большая, то пространство будет почти плоским и эвклидова геометрия будет соответствовать небольшим расстояниям. Но придется признать, что для больших расстояний эвклидова геометрия неприменима.

Для наглядности представьте бригаду маляров, покрывающих краской большой шар. По мере того как множатся слои краски, площадь поверхности увеличивается. Если шар находится в плоском трехмерном пространстве, слои можно продолжать накладывать бесконечно, и шар будет становиться все больше и больше. Однако если трехмерное пространство является поверхностью сферы в другом измерении, его объем не может увеличиваться бесконечно. В какой-то момент шар, покрытый множеством слоев краски, станет занимать половину пространства. После этого маляры обнаружат, что оказались зажаты в области неизменно сокращающегося размера, а почти все пространство занято шаром, увеличившимся из-за большого количества слоев краски. Так они поймут, что живут не в плоском, а в искривленном пространстве.

Этот пример показывает, что невозможно судить о геометрии мира, исходя из основных принципов, как полагали древние греки. Необходимо измерять пространство, в котором мы живем, и экспериментальным путем выяснять его геометрию.

Способ описывать искривленные пространства нашел немец Бернхард Риман еще в 1854 году, но на протяжении шестидесяти лет этот способ представлял интерес исключительно для математиков. Этот способ может описывать искривленные пространства, существующие в абстракции, но никто не видел оснований, почему должно быть искривлено физическое пространство, в котором мы живем. Основание нашлось только в 1915 году, когда Эйнштейн выступил со своей общей теорией относительности.

Общая теория относительности стала крупной интеллектуальной революцией, которая изменила наши представления о Вселенной. Эта теория имеет отношение не только к искривлению пространства, но и к искривлению, или искажению, времени. Эйнштейн в 1905 году понял, что пространство и время теснейшим образом связаны друг с другом. Так родилась его частная (специальная) теория относительности, связывающая пространство и время воедино. Описать событие можно с помощью четырех параметров. Три из них описывают положение события. Событие может происходить на севере или востоке, в стольких-то километрах от Оксфордской площади и на такой-то высоте над уровнем моря. В более крупном масштабе это могут быть Галактическая широта и долгота – это углы в сферической системе координат, центром которой является Солнце. Третьей, дополняющей их координатой служит расстояние от Солнца. Четвертый параметр – время события.

Таким образом, можно представить пространство и время как четырехмерную сущность, которая называется «пространство-время». Каждая точка пространства-времени помечена четырьмя параметрами, которые определяют ее положение в пространстве и времени. Объединить пространство и время в пространство-время было бы несложно, если бы существовал уникальный способ определения времени и положения каждого события. В блестящей статье 1905 года, которую Эйнштейн написал, еще будучи сотрудником патентного бюро в Швейцарии, он показал, что время и положение, в котором, как считается, происходит событие, зависят от того, как движется наблюдатель. Это означает, что время и пространство неразрывно связаны между собой.

Время, в которое происходит событие, для разных наблюдателей будет одинаковым, если наблюдатели не движутся относительно друг друга. Но разница будет тем заметнее, чем выше их относительная скорость. Возникает логичный вопрос: а насколько быстро нужно двигаться, чтобы время для одного наблюдателя пошло вспять относительно времени другого наблюдателя? Ответ – в этом лимерике:


Очень шустрая мисс из Дакоты
Говорила: «Эйнштейн – это что-то!
Раз летала я где-то
Выше скорости света
И вернулась за день до отлета!» [17]

 

Так что единственное, что нам нужно для путешествия во времени, – космический корабль, который будет обладать сверхсветовой скоростью. К сожалению, в той же статье Эйнштейн показал, что реактивной тяги, необходимой для ускорения космического корабля, по мере приближения к скорости света будет требоваться все больше и больше. Точнее, потребуется бесконечное количество энергии для достижения скорости, превышающей световую.

Таким образом, статья Эйнштейна 1905 года исключает возможность путешествия в прошлое. Она также показывает, что космические путешествия к звездам должны стать весьма длительным и утомительным делом. Если нельзя путешествовать со сверхсветовой скоростью, то полет от нас до ближайшей звезды и обратно займет как минимум восемь лет, а к центру Галактики, соответственно, примерно 50 000 лет. Если корабль будет двигаться со скоростью, близкой к световой, то для людей на борту полет к центру Галактики займет всего несколько лет. Но это не станет большим утешением, потому что на Земле за эти тысячи лет, разумеется, все их друзья и близкие умрут и будут давно забыты. Поэтому, кстати, авторы научно-фантастических романов стараются найти способы как-то обойти эту неприятность.

В 1915 году Эйнштейн показал, что влияние гравитации можно объяснить предположением о том, что пространство-время искривляется, или искажается, под воздействием материи и энергии. Мы можем наблюдать такое искривление пространства-времени под воздействием массы Солнца: видимое положение звезды или источника радиосигнала слегка смещается, когда Солнце оказывается между земным наблюдателем и источником. Изменение очень незначительное, примерно одна тысячная градуса, – это как перемещение на сантиметр относительно километра. Тем не менее его можно измерить с высокой точностью, и оно соответствует расчетам общей теории относительности. У нас есть экспериментальные доказательства искривления пространства и времени.

Степень искривления в ближайшем к нам окружении очень мала, потому что все гравитационные поля в Солнечной системе очень слабые. Но нам известно о возможности возникновения чрезвычайно сильных полей – например, в момент Большого взрыва или в черных дырах. Так могут ли пространство и время оказаться искривленными настолько, чтобы стали возможны описанные в научной фантастике выходы в гиперпространство, «кротовые норы» и путешествия во времени? На первый взгляд, все это возможно. Например, в 1948 году Курт Гёдель нашел решение уравнений поля для общей теории относительности Эйнштейна, которое представляет Вселенную, где вся материя вращается. В этой Вселенной можно отправиться в космическое путешествие и вернуться раньше времени старта. Гёдель работал в Принстонском институте перспективных исследований, там же, где провел свои последние годы Эйнштейн, и прославился доказательством того, что нельзя доказать все без исключения верные утверждения даже в такой, на первый взгляд, простой области, как арифметика. Но его доказательство, что общая теория относительности допу

скает путешествие во времени, серьезно расстроило Эйнштейна, который считал, что это невозможно.

Теперь мы знаем, что решение Гёделя не имеет отношения к нашей Вселенной, потому что оно не предполагает расширения. В нем также представлено невероятно высокое значение параметра, который называется космологической постоянной. По общему убеждению, это значение чрезвычайно мало. Тем не менее с тех пор были найдены очевидно более рациональные решения, допускающие путешествие во времени. Наибольший интерес представляет так называемая теория струн: космические струны, перемещающиеся одна относительно другой с околосветовой скоростью.

Космические струны – прекрасная идея теоретической физики, до которой не додумались писатели-фантасты. Судя по названию, эти струны очень длинные и имеют очень малое поперечное сечение. Но на самом деле их скорее можно представить в виде резиновых лент, испытывающих огромное напряжение – порядка миллиарда миллиардов миллиардов тонн. Космическая струна, прикрепленная к Солнцу, разгонит его от нуля до ста километров в час за тридцатую долю секунды.

Может показаться, что идея космических струн «высосана из пальца» и ее следует оставить писателям-фантастам, однако есть вполне реальные научные основания полагать, что космические струны могли образоваться в молодой Вселенной вскоре после Большого взрыва. А поскольку они находятся под таким невероятным напряжением, не исключено, что их скорость приближается к световой.

Вселенную Гёделя и быстродвижущиеся космические струны пространства-времени объединяет то, что они начинаются такими искаженными и искривленными, что пространство-время искривляется в обратную сторону и путешествие во времени становится возможным. Такую искривленную Вселенную мог создать Бог, только непонятно, зачем Ему это могло понадобиться. Все свидетельствует, что Вселенная началась в момент Большого взрыва без какого-то искривления, необходимого для путешествия в прошлое. А поскольку мы не в состоянии изменить процесс рождения Вселенной, то вопрос о возможности путешествия во времени сводится к другому: можем ли мы так искривить пространство-время, чтобы отправиться в прошлое. Думаю, это важная тема для изучения, но к ней надо подходить аккуратно, чтобы вас не сочли ненормальным. Если кто-то попробует получить грант на исследование путешествия во времени, заявка будет отклонена незамедлительно. Ни одно государственное учреждение не позволит себе признаться, что оно тратит общественные деньги на такие причуды, как путешествия во времени. Лучше пользоваться научной терминологией и говорить, например, о замкнутых кривых времени, что подразумевает то же самое. И это действительно очень серьезный вопрос. Поскольку общая теория относительности в принципе допускает путешествие во времени, допускает ли она это в нашей Вселенной? А если нет, то почему?

С путешествием во времени тесно связана способность быстро перемещаться из одной точки пространства в другую. Как я говорил ранее, Эйнштейн показал, что для разгона космического корабля до околосветовой скорости потребуется бесконечно мощная реактивная тяга. Так что единственный способ переместиться из одной части Галактики в другую за разумный период времени – возможность свернуть пространство-время таким образом, чтобы получилась небольшая труба, или «кротовая нора». Она может связать две части Галактики и действовать как кратчайший путь между ними; вы сможете слетать туда и обратно и еще застать в живых всех ваших друзей. Такие «кротовые норы» всерьез рассматривались как возможность, доступная цивилизации будущего. Если вам удастся переместиться из одной части Галактики в другую за пару недель, то и вернуться вы можете через другую «нору» – при этом раньше, чем отправились в путь. Также ничто не помешает вам путешествовать вперед и возвращаться в прошлое через одну «кротовую нору», если оба ее конца движутся относительно друг друга.

Можно сказать, что для создания «кротовой норы» необходимо изогнуть пространство-время в сторону, обратную той, в которую искривляет ее обычная материя. Обычная материя искривляет пространство-время на себя, как поверхность Земли. Но для создания «кротовой норы» требуется материя, которая искривляет пространство-время в обратную сторону, как поверхность седла. То же самое справедливо для любого другого искривления пространства-времени, чтобы путешествовать в прошлое, если только Вселенная не возникла настолько искривленной, что в ней уже есть возможности путешествия во времени. Только в таком случае потребуется материя с отрицательной массой и отрицательной плотностью энергии.

Энергия – как деньги. Если у вас в банке положительный баланс, вы можете пользоваться деньгами каким угодно образом. Однако согласно классическим законам, которые до недавнего времени считались непреложными, при использовании энергии овердрафт не допускается. Классические законы исключают для нас возможность искривить Вселенную так, чтобы появилась возможность путешествий во времени. Но классические законы опровергает квантовая теория – вторая после общей теории относительности великая интеллектуальная революция в наших представлениях о Вселенной. Квантовая теория более гибкая и позволяет в некоторых случаях допустить овердрафт. Однако банк должен оказать нам такую любезность. Иными словами, квантовая теория допускает наличие в некоторых местах отрицательной плотности энергии, если обеспечить положительную плотность в других.

Квантовая теория допускает отрицательную плотность энергии, поскольку основана на принципе неопределенности. А он утверждает, что некоторые характеристики, например положение и скорость частицы, не могут одновременно иметь точно измеренные значения. Чем точнее определяется положение частицы, тем выше неопределенность относительно ее скорости и наоборот. Принцип неопределенности применяется также к полям – например, к электромагнитному или гравитационному полю. Он утверждает, что эти поля не могут иметь нулевое значение даже там, где, как нам кажется, пустое пространство. Дело в том, что если их значения будут равны нулю, то это означает, что они должны иметь четко определенное положение, равное нулю, и четко определенную скорость, равную нулю. А это противоречит принципу неопределенности. Значит, поля должны иметь некоторую минимальную флуктуацию. Можно представить так называемые флуктуации вакуума в виде пар частиц и античастиц, которые внезапно возникают, разъединяются, затем сливаются вновь и аннигилируют, взаимоуничтожаясь.

Такие пары частиц – античастиц считаются виртуальными, потому что их невозможно непосредственно зафиксировать с помощью детектора частиц. Но косвенный эффект наблюдать можно. Для этого используется так называемый эффект Казимира. Попробуйте представить две параллельные металлические пластины, находящиеся на небольшом расстоянии одна от другой. Пластины работают как зеркала для виртуальных частиц и античастиц. Это означает, что пространство между пластинами выглядит как органная труба, только она пропускает световые волны определенной резонансной частоты. В результате выяснится, что между пластинами происходит некоторое количество квантовых флуктуаций, отличное от того, что происходит за ними, там, где эти флуктуации могут иметь любую длину волны. Различие в количестве виртуальных частиц между пластинами и снаружи означает, что с одной стороны пластины испытывают большее давление, чем с другой. Возникает небольшая сила, которая приближает пластины друг к другу. Эту силу можно измерить экспериментально. Так что виртуальные частицы существуют в реальности и производят реальный эффект.

Поскольку между пластинами меньше виртуальных частиц, или квантовых флуктуаций в вакууме, то и плотность энергии здесь ниже, чем в окружающем пространстве. Но плотность энергии пустого пространства на большом удалении от пластин должна равняться нулю. Иначе пространство-время окажется искривленным и Вселенная – не совсем плоской. Значит, плотность энергии в области между пластинами должна быть отрицательной.

Экспериментально доказанное отклонение света свидетельствует о том, что пространство-время искривлено, а эффект Казимира подтверждает, что искривление может иметь отрицательное значение. И может показаться, что по мере развития науки и технологий мы сумеем создавать «кротовые норы» или искривлять пространство и время каким-то иным образом, чтобы получить возможность путешествовать в прошлое. Но в таком случае неизбежно возникает целый ряд вопросов и проблем. Например: если в будущем станут возможны путешествия во времени, почему до сих пор никто не вернулся к нам из будущего и не рассказал, как это сделать.

Даже если есть веские основания держать нас в неведении, человеку по своей природе трудно поверить, что никто не захочет появиться и раскрыть нам, бедным отсталым крестьянам, тайну путешествия во времени. Разумеется, кое-кто утверждает, что нас уже посещают гости из будущего – они прилетают на НЛО, а правительства вовлечены в гигантский заговор по сокрытию этих фактов, чтобы самим пользоваться научными знаниями, которые несут с собой гости. Могу сказать лишь одно: если правительства что-то и скрывают, то они все равно не в состоянии воспользоваться полезной информацией, полученной от инопланетян. Я очень скептически отношусь к «теории заговоров» и считаю более правдоподобной «теорию лажи». Сообщения об НЛО не могут быть связаны исключительно с инопланетянами, потому что они взаимно противоречивы. Но если признать, что некоторые из этих наблюдений – просто ошибки или галлюцинации, не логичнее ли допустить, что они и являются таковыми, чем поверить, что нас посещают гости из будущего или из другой части Галактики? Если эти гости действительно хотят колонизировать Землю или предупредить нас о какой-то опасности, то действуют они крайне неэффективно.

Есть способ примирить идею путешествия во времени с тем фактом, что мы никогда не встречались с гостями из будущего. Можно сказать, что такие путешествия станут возможными только в будущем. Пространство-время нашего прошлого фиксированное, потому что мы наблюдали его и видели, что оно недостаточно искривлено для того, чтобы мы имели возможность отправиться назад во времени. А будущее – открыто, поэтому когда-нибудь мы научимся искривлять пространство-время и получим возможность путешествий во времени. Но поскольку искривлять пространство-время мы сможем лишь в будущем, то не сможем возвращаться из него в наше настоящее или еще раньше.

Такая картинка может вполне объяснить, почему мы не испытываем наплыва туристов из будущего. Но она все равно оставляет место для множества парадоксов. Предположим, появилась возможность совершить полет на космическом корабле и вернуться до начала полета. Что вам помешает взорвать ракету на стартовой площадке и тем самым исключить для себя возможность такого полета? Есть и другие не менее парадоксальные версии: например, вернуться в прошлое и убить своих родителей до того, как вы появились на свет. Этому есть два возможных решения.

Одно я бы назвал согласованно-историческим подходом . В этом случае можно найти согласованное решение физических уравнений – даже при том, что пространство-время искривлено настолько, что есть возможность путешествия в прошлое. С этой точки зрения, вы не можете подготовить ракету для путешествия в прошлое, если вы в него не вернулись и не смогли взорвать стартовую площадку. Это – последовательная картинка, но она говорит о том, что мы полностью детерминированы: мы не в состоянии изменить свои мысли. Это чересчур для свободы воли.

Другое решение я называю альтернативно-историческим подходом . Его отстаивал физик Дэвид Дойч, и его, вероятно, имели в виду создатели фильма «Назад в будущее». При таком подходе в одной альтернативной истории не будет никакого возвращения из будущего до старта ракеты и, соответственно, не будет и возможности ее взорвать. Но когда путешественник возвращается из будущего, он попадает в другую альтернативную историю. В ней человеческая раса прилагает неимоверные усилия, чтобы построить космический корабль, но перед стартом из другой части Галактики появляется похожий корабль и уничтожает построенный.

Дэвид Дойч предпочитает альтернативно-исторический подход концепции множественности историй , которую выдвинул физик Ричард Фейнман. Его идея заключается в том, что, согласно квантовой теории, у Вселенной нет уникальной и единственной истории. Во Вселенной существуют все возможные истории, каждая – со своей долей вероятности. Должна быть возможность существования истории, в которой на Ближнем Востоке – устойчивый мир, но вероятность такой истории, скорее всего, невелика.

В некоторых историях пространство-время искривлено настолько, что такие объекты, как ракеты, смогут возвращаться в свое прошлое. Но каждая история – цельная и самодостаточная, описывающая не только искривленное пространство-время, но и все объекты, в нем находящиеся. Поэтому ракета, возвращаясь, не может попасть в другую альтернативную историю. Она остается в той же истории, которая должна быть самосогласованной. И я, в отличие от Дойча, полагаю, что идея множественности историй работает скорее в пользу согласованно-исторического, нежели альтернативно-исторического подхода.

Судя по всему, мы не в состоянии отказаться от согласованно-исторической картины. Однако это может не касаться проблем детерминизма и свободы воли, если есть очень малая вероятность историй, в которых пространство-время искривлено так, что путешествие во времени возможно за пределами макроскопического масштаба. Я это называю гипотезой о защищенности хронологии: законы физики устроены так, чтобы предотвратить путешествие во времени на макроскопическом уровне.

ЕСТЬ ЛИ СМЫСЛ УСТРАИВАТЬ ПРИЕМ ДЛЯ ПУТЕШЕСТВЕННИКОВ ВО ВРЕМЕНИ? КАК ВЫ ДУМАЕТЕ, ПРИДЕТ ЛИ КТО-НИБУДЬ?

В 2009 году я устроил прием для путешественников во времени в своем колледже Гонвиль и Киз в Кембридже. Я думал снять фильм. Я хотел, чтобы пришли только настоящие путешественники во времени, поэтому не стал рассылать приглашения до окончания приема.

В назначенный день я сидел в колледже и ждал, но никто не пришел. Я был разочарован, но не удивлен, поскольку показал, что если общая теория относительности верна и плотность энергии положительная, то путешествие во времени невозможно. Я буду рад, если хотя бы одно из моих предположений оказалось ошибочным.

Похоже, все выглядит так, что если пространство-время искривлено почти достаточно для возможности путешествия в прошлое, то виртуальные частицы могут стать почти реальными частицами, движущимися по замкнутым траекториям. Плотность виртуальных частиц и их энергия значительно возрастают, что означает, что вероятность таких историй очень мала. Хотя это становится похожим на деятельность агентства по защите хронологии, которое стремится сохранить мир для историков. Но тема искривления пространства и времени пока еще в зачаточном состоянии. Согласно объединяющей форме теории струн, известной как М-теория, на которую мы возлагаем большие надежды в плане объединения общей теории относительности и квантовой теории, пространство-время должно иметь одиннадцать измерений, а не четыре, которые мы ощущаем. Суть в том, что семь из этих одиннадцати измерений свернуты в столь малое пространство, что мы его не замечаем. С другой стороны, остающиеся четыре измерения практически плоские и представляют собой то, что мы называем пространством-временем. Если такая картина верна, то должна быть возможность каким-то образом соединить четыре плоских измерения с остающимися семью сильно искривленными, или искаженными, измерениями. Что из этого получится, мы пока не знаем. Но возможности открываются весьма увлекательные.

В заключение скажу следующее. Наши современные представления не исключают возможности быстрых космических путешествий и возвращения в прошлое.

Это может порождать огромные логические проблемы, поэтому будем надеяться, что существует некий Закон о защищенности хронологии, который не позволит людям возвращаться в прошлое и убивать своих родителей. Но любителям научной фантастики не стоит расстраиваться. М-теория дарит надежду.

7



2020-02-04 164 Обсуждений (0)
Возможно ли путешествие во времени? 0.00 из 5.00 0 оценок









Обсуждение в статье: Возможно ли путешествие во времени?

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (164)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.016 сек.)