Мегаобучалка Главная | О нас | Обратная связь


ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB



2020-02-04 1041 Обсуждений (0)
ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB 0.00 из 5.00 0 оценок




РЕАЛИЗАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ, ИСПОЛЬЗУЮЩИХ МЕТОДЫ ИНТЕГРИРОВАНИЯ, В СРЕДЕ MATLAB

 

Курсовая работа

 

 

Выполнил: студент  курса

Научный руководитель:

кандидат физико-

математических наук, доцент

 

 

Благовещенск 2008
СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ.. 3

1. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB.. 5

1.1 Численный метод. 9

1.2 Символьный метод. 11

2. MATLAB – СРЕДА МОДЕЛИРОВАНИЯ.. 15

3. РЕАЛИЗАЦИЯ ЭКОНОМИЧЕСКОЙ МОДЕЛИ ВЗАИМОРАСЧЁТОВ ПРЕДПРИЯТИЙ В СРЕДЕ MATLAB.. 16

ЗАКЛЮЧЕНИЕ.. 19

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ... 20

ПРИЛОЖЕНИЯ.. 21

 


ВВЕДЕНИЕ

 

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этого метода состоит в замене реального объекта его «образом» - математической моделью. Этот метод позволяет быстро и «безболезненно» изменить объект, изучить его свойства и поведение в различных средах и т.д. Неудивительно, что математическое моделирование бурно развивается и проникает во все сферы знаний.

Создание модели проходит в 3 этапа: модель – алгоритм – программа.

 

 

Рис. 1 – Создание модели

 

На первом этапе строится модель, наиболее полно отображающая свойства объекта. Модель исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте. Второй этап включает в себя разработку алгоритма, для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые необходимо провести для нахождения искомых величин с заданной точностью. На третьем этапе создаются программы, переводящие модель и алгоритм на доступный компьютеру язык. К ним предъявляются требования экономичности и адаптивности к особенностям решаемых задач и используемых компьютеров. Их можно назвать электронным эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на компьютере.

Целью данной курсовой работы является изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования.


ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB

 

Возможны два различных подхода к определению определённого интеграла.

ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции F и обозначается .

Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом: , это формула Ньютона-Лейбница.

 

Рис. 2 – Определённый интеграл
 

ОПРЕДЕЛЕНИЕ 2: Если при любой последовательности разбиений отрезка [a;b] таких, что δ=maxΔxi→0 (n→∞) и при любом выборе точек  интегральная сумма σk= f(εi) Δxi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е Δxi=A(2).  Где Δхi=xi-xi-1 (i=1,2,…,n) ε=maxΔxi – начало разбиения  произвольная точка из отрезка [xi-1;xi]
сумма всех произведений f(εi)Δxi, (i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.

Рис. 3 – Геометрический смысл

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ:

 

Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл  численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, .

Рассмотрим основные методы интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.

Формула прямоугольников

Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: .

Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0, x1, x2,…, xn=b на n равных частей длины Δх, где Δх=(b-a)/n.

Рис. 4 – Формула прямоугольников
 
 

 


Обозначим через y0, y1 ,y2,…, yn-1, yn значение функции f(x) в точках x0, x1, x2…, xn, то есть, если записать в наглядной формуле:

Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).

В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид.

Составим суммы: y0Δx+ y1Δx1+ y2Δx2…+yn-1Δx; Y1Δx+ y2Δx+…+ynΔx.

В результате вычислений получаем конечную формулу прямоугольников:

Формула трапеций

Возьмём определённый интеграл , где  — непрерывная  подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).


 

 


Рис. 5 – Формула трапеций

 

Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это Δx,a Δx=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xk разбивают криволинейную трапецию на n полосок. Принимая каждую из этих полосок за обыкновенную трапецию, получаем, что площадь криволинейной трапеции приблизительно равна сумме обыкновенных трапеций.

Рис. 6 – Разбиение трапеции

Площадь крайней полоски слева равна произведению полусуммы основания на высоту

Итак, запишем сказанное выше в математическом виде:

– это и есть формула трапеций.

Формула Симпсона (формула парабол).

Разделим отрезок [a;b] на чётное число равных частей n=2m. Площадь криволинейной трапеции, соответствующей первым двум отрезкам [x0,x1], [x1,x2] и ограниченной заданной кривой y=f(x), заменим площадью криволинейной трапеции, которая ограничена параболой второй степени, проходящей через три точки M0[x0,y0], M1[x1,y1], M2[x2,y2] и имеющей ось, параллельную оси Oy (рис). Такую криволинейную трапецию будем называть параболической трапецией.

Уравнение па

 

раболы с осью, параллельной оси Oy, имеет вид: . Коэффициенты A, B и C однозначно определяются из условия, что парабола проходит через три заданные точки. Аналогичные параболы строятся и для других пар отрезков. Сумма параболических трапеций и даст приближённое значение интеграла. Сначала вычислим площадь одной параболической трапеции. И продолжая вычисления, получаем формулу Симпсона:


Теперь рассмотрим методы решения интегралов с помощью программы Matlab.

1.1 Численный метод

Вычисление определенных интегралов.

Рассмотрим пример: .

В первую очередь необходимо создать функцию, вычисляющую подынтегральное выражение.

 

 

Для вычисления интеграла вызовем функцию quad, задав первым аргументом ссылку на функцию fint, а вторым и третьим — нижний и верхний пределы интегрирования.

 

 

По умолчанию функция quad вычисляет приближенное значение интеграла с точностью 10-6. [1, C.266] Для изменения точности вычислений следует задать дополнительный четвертый аргумент:

 

Вычисление двойных интегралов.

В MATLAB определена функция dblquad для приближенного вычисления двойных интегралов. Как и в случае вычисления определенных интегралов, следует написать файл-функцию для вычисления подынтегрального выражения. Вычислим интеграл:

Следовательно, функция должна содержать два аргумента x и y:

 

 

Функция dblquad имеет пять входных аргументов. При ее вызове необходимо учесть, что первыми задаются пределы внутреннего интеграла по х, а вторыми — внешнего по у:

 

 

Интегралы, зависящие от параметра.

Функции quad и quadl позволяют находить значения интегралов, зависящих от параметров. Аргументами функции, вычисляющей подынтегральное выражение, должна быть не только переменная интегрирования, но и все параметры. Значения параметров указываются через запятую, начиная с шестого аргумента quad или quadl. [1, C.270]

Решим интеграл:

Зададим функцию

 

Используя quad, вычислим интеграл:

 

Символьный метод

Символьные переменные и функции являются объектами класса sym object, в отличие от числовых переменных, которые содержатся в массивах double array. Символьный объект создается при помощи функции syms. Команда

>> syms х a b

создает три символьные переменные х, а и b. Конструирование символьных функций от переменных класса sym object производится с использованием обычных арифметических операций и обозначений для встроенных математических функций, например:

>>f = (sin(x)+a)^2 * (cos(x)+b)^2/sqrt (abs(a+b))

f =

( sin(x)+a)2*(cos(x)+b)^2/abs(a+b)^(1/2)

Запись формулы для выражения в одну строку не всегда удобна, более естественный вид выражения выводит в командное окно функция pretty:

>>pretty(f)

             

 

2           2

(sin(x)+a) (cos(x)+b)

-------------------------------

                  1/2

       | a + b |

Символьную функцию можно создать без предварительного объявления переменных при помощи sym, входным аргументом которой является строка с выражением, заключенная в апострофы:

 

 

Symbolic Math Toolbox позволяет работать как с неопределенными интегралами, так и с определенными. Неопределенные интегралы от символьных функций вычисляются при помощи int, в качестве входных аргументов указываются символьная функция и переменная, по которой происходит интегрирование, например:

 

Разумеется, функция int не всегда может выполнить интегрирование. В некоторых случаях int возвращает выражение для первообразной через специальные функции, например, посчитаем интеграл:

 

 

Ответ содержит так называемую функцию ошибки, которая определяется интегралом с переменным верхним пределом:

Кроме того, в полученное выражение входит комплексная единица, хотя подынтегральная функция вещественна. Требуются дополнительные преобразования для достижения окончательного результата.

Для нахождения определенного интеграла в символьном виде следует задать нижний и верхний пределы интегрирования, соответственно, в третьем и четвертом аргументах int:

 

 

Двойные интегралы вычисляются повторным применением функции int. [1, C.780]

Например:

Определим символьные переменные а, b, с, d, x, у, подынтегральную функцию f от х и у и проинтегрируем сначала по х, а затем по у:

 

Аналогичным образом в символьном виде вычисляются любые кратные интегралы.




2020-02-04 1041 Обсуждений (0)
ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB 0.00 из 5.00 0 оценок









Обсуждение в статье: ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1041)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)