Мегаобучалка Главная | О нас | Обратная связь


Расчёт и построение границы заданного запаса устойчивости АСР.



2020-02-04 273 Обсуждений (0)
Расчёт и построение границы заданного запаса устойчивости АСР. 0.00 из 5.00 0 оценок




ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

Государственное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

 

Факультет: Теплоэнергетический

Кафедра: Автоматизации теплоэнергетических процессов

Специальность: 220301 «Автоматизация технологических процессов и производств (в теплоэнергетике)»

 

Курсовая работа по ТАУ

Расчёт одноконтурной системы автоматического регулирования

Вариант №7

 

 

Исполнитель

студент гр.6241:                                                                                    Коростелев А.А.

                                                                                                       

 

Руководитель

преподаватель:                                                                                      Татарников А.А.  

 

 

Томск 2007


Аннотация

 

В данной курсовой работе представлены расчёт и построение границы заданного запаса устойчивости, одноконтурной АСР с ПИ-регулятором, корневым методом с использованием РАФЧХ. Рассмотрен процесс определения оптимальных параметров настройки регулятора, произведены расчёт и построение переходных процессов в замкнутой АСР при возмущении f, идущем по каналу регулирующего воздействия, и при сигнале задания S. После каждого из графиков данных переходных процессов произведена оценка качества этих процессов.   


Содержание

Введение……………………………………………………………………………………….……….4

1. Расчёт оптимальных параметров настройки(ОПН) ………………………………………….…..5

1.1 Расчёт и построение границы заданного запаса устойчивости АСР …………………..……...5

1.2 Обоснование и выбор ОПН регулятора……………………………….…………………….….10

2. Расчёт, построение и оценка качества переходного процесса по каналу S -Y ……………..…11

3. Расчёт, построение и оценка качества переходного процесса по каналу f -Y ……………...…15

Заключение…………………………………………………………………………………………....20


 Введение

 

       Данная курсовая работа посвящена расчёту одноконтурной системы автоматического регулирования. Для оценки систем регулирования с точки зрения их практической пригодности необходимо определить, в каких условиях эти системы можно использовать, какие настроечные параметры регулятора требуется установить, чтобы процесс регулирования, осуществляемый при помощи различных регуляторов систем, был оптимальным.

       В настоящее время системы регулирования получили широкое применение в различных отраслях промышленности. В связи с этим проблема определения оптимальных параметров настройки регуляторов систем остаётся актуальной, даже несмотря на то, что разработано большое количество приёмов и методов, позволяющих решать эти проблемы. В частности, существует два инженерных метода расчёта систем регулирования: корневой (с использованием РАФЧХ) и частотный по максимуму АЧХ замкнутой системы (метод В.Я. Ротача).

В данной курсовой работе приводятся расчёта заданной АСР, исходные данные и структурная схема которой представлены в задании на выполнение курсовой работы. Первый пункт посвящен расчёту и построению границы заданного запаса устойчивости АСР с ПИ-регулятором и объектом регулирования, корневым методом. А также обоснование и выбор оптимальных параметров настройки. Второй пункт посвящён расчёту переходного процесса по каналу регулирующего воздействия S-Y, и прямой оценки качества этого процесса. Третий пункт содержит расчёт переходного процесса при возмущении f, идущему по каналу воздействия. А также произведены оценки прямых критериев качества.

 

 

    

 

 

Расчёт оптимальных параметров настройки (ОПН).

Расчёт и построение границы заданного запаса устойчивости АСР.

 

       Для расчёта и построения границы заданного запаса устойчивости АСР с ПИ-регулятором, представленной на рисунке 1, воспользуемся корневым методом параметрического синтеза систем автоматического регулирования с применением расширенных амплитудно-фазовых частотных характеристик (РАФЧХ).

       Используя исходные данные, приведенные в таблице 1, можем записать, что для заданной системы регулирования установлены следующие требования к запасу устойчивости системы: степень затухания переходного процесса в системе .

       Исходя из этого можно определить, зависимость между степенью затухания переходных процессов в заданной системе регулирования ψ и степенью колебательности переходных процессов в заданной системе регулирования m, по таблице соответствия оценок запаса устойчивости приведённой ниже.

0 0.75 0.80 0.265 0.90 0.95 0.998 1.0
m 0 0.221 0.265 0.305 0.366 0.478 1.0

 

Эта таблица была получена на основе следующего соотношения:

                                             (1)

где ψ - степенью затухания;

     m – степень колебательности;

       Передаточная функция объекта регулирования согласно исходных данных определяется по формуле:

                                                                           (2)

где Р – оператор Лапласа;

К – коэффициент передачи; 

 При n=2 выражение для  примет вид:

                                                  (3)                                     

     Используя данные таблицы 1 подставляем значения параметров в выражение (3). После подстановки значений параметров получаем окончательное выражение для передаточной функции объекта регулирования:

                                                        (4)                                

Определим расширенные частотные характеристики объекта регулирования. Расширенные частотные характеристики какого-либо звена можно получить подстановкой в передаточную функцию этого звена W(P), оператора  или , в выражениях для оператора Лапласа ω – частота, с-1. В первом случае расчётные формулы метода обеспечивают получение границы заданной степени колебательности системы m, а во втором - получение границы заданной степени устойчивости системы  в пространстве параметров настройки регулятора.

 Так как заданно значение колебательности, заменяем в формуле (4) оператор , в результате получаем выражение для РАФЧХ объекта регулирования:

                             (5)              

Используя математический пакет MAthCad, предварительно задав начальное значение частоты =0 с-1 и шаг по частоте с-1, рассчитываем расширенные частотные характеристики объекта при изменении частоты до ω=0,20 с-1.

 

 Расширенная вещественная частотная характеристика (РВЧХ):          

                                     Reоб(m,ω)=Re(Wоб(m,iω))                                                            (6)

Расширенная мнимая частотная характеристика (РМЧХ):    

                                       Imоб(m,ω)=Im(Wоб(m,iω))                                                                (7)

Расширенная амплитудно-частотная характеристика (РАЧХ)       

                                                                                      (8)

Расширенная фазо-частотная характеристика (РФЧХ):  

                                                                                                     (9)

Результаты расчётов сведём в таблицу 2, приведенную ниже.

 

Таблица 2 – Расширенные частотные характеристики объекта регулирования

частота ω, с-1 Reоб(m,ω) Imоб(m,ω) Аоб(m,ω) φоб(m,ω), рад

0,001

1.548

-0.178

1.558

-0.114

0,003

1.562

-0.47

1.631

-0.292

0,004

1.493

-0.772

1.681

-0.477

0,006

1.341

-1.049

1.702

-0.664

0,007

1.118

-1.273

1.695

-0.85

0,008

0.852

-1.425

1.648

-1.032

0.01

0.571

-1.499

1.604

-1.207

0.011

0.301

-1.501

1.531

-1.373

 

Окончание таблицы 2

частота ω, с-1

Reоб(m,ω)

Imоб(m,ω)

Аоб(m,ω)

φоб(m,ω), рад

0.013

0.06

-1.446

1.448

-1.529

0.014

-0.142

-1.352

1.359

-1.675

0.016

-0.303

-1.233

1.269

-1.812

0.017

-0.425

-1.102

1.181

-1.938

0.019

-0.512

-0.97

1.097

-2.057

0.021

-0.57

-0.841

1.017

-2.166

0.022

-0.605

-0.721

0.942

-2.269

0.024

-0.622

-0.612

0.872

-2.364

0.025

-0.624

-0.513

0.808

-2.454

0.027

-0.616

-0.426

0.749

-2.537

0.028

-0.601

-0.349

0.695

-2.615

0.03

-0.58

-0.283

0.645

-2.688

0.031

-0.556

-0.225

0.6

-2.757

0.033

-0.531

-0.176

0.559

-2.822

0.034

-0.504

-0.134

0.521

-2.883

0.036

-0.477

-0.097

0.487

-2.94

0.037

-0.451

-0.067

0.455

-2.995

0.039

-0.425

-0.041

0.427

-3.046

0.04

-0.4

-0.019

0.4

-3.095

0.042

-0.376

1.212e-4

0.376

3.141

 

 

Расчётные формулы корневого метода для ПИ- регулятора имеют следующий вид:

                                                                                          (10)

 

                                                                                           (11)

В вышеприведенных формулах (10) и (11) - коэффициент передачи ПИ- регулятора, - постоянная интегрирования ПИ- регулятора или время изодрома.

 Зададим диапазон изменения частоты с-1 с шагом c-1, определим настройки регулятора  и Кр в заданном диапазоне частот. Результаты расчётов сведём в таблицу 3.

частота ω, с-1

 

Таблица 3 –Результаты расчёта настройки ПИ- регулятора в заданном диапазоне частот

w

Kp

Kp/Tu

0,0010

-0.611

0,0001

2.5e-3

-0.522

0,0005

0,0040

-0.429

0,0013

5.5e-3

-0.33

0,0024

0,0070

-0.227

0,0035

8.5e-3

-0.12

0,0049

0.01

-8.723e-3

0,0066

0.011

0.106

0,0084

0.013

0.224

0.01

0.014

0.345

0.012

0.016

0.468

0.014

0.017

0.593

0.016

 

 

Окончание таблицы 3

частота ω, с-1

Kp

Kp/Tu

0.019

0.721

0.017

0.021

0.85

0.019

0.022

0.98

0.02

0.024

1.112

0.021

0.025

1.244

0.022

0.027

1.376

0.023

0.028

1.509

0.023

0.03

1.641

0.023

0.031

1.773

0.022

0.033

1.904

0.021

0.034

2.034

0.019

0.036

2.163

0.017

0.037

2.301

0.013

0.039

2.415

9.737e-3

0.04

2.537

5.243e-3

0.042

2.658

-4.031e-5

 

 

По данным таблицы 3 построим график зависимости  =f(Kp) ,т.е укажем границу заданного запаса устойчивости системы регулирования на рисунке 3.

 

 

 

Рисунок 3 - Область параметров настройки ПИ- регулятора

 

Полученная кривая является линией заданной степени затухания Ψ= Ψзад=0,9 процесса регулирования, что соответствует степени колебательности m=0.366. Таким образом, все значения  и Kp , лежащие на этой кривой, обеспечивают определенную степень затухания (в данном случае Ψ= Ψзад=0,9).

Значения  и Kp , лежащие внутри области, ограниченной данной кривой и осями координат, обеспечат процесс регулирования со степенью затухания больше заданного (Ψ1> Ψзад), а лежащие вне этой области – со степенью затухания меньше заданной (Ψ1зад).




2020-02-04 273 Обсуждений (0)
Расчёт и построение границы заданного запаса устойчивости АСР. 0.00 из 5.00 0 оценок









Обсуждение в статье: Расчёт и построение границы заданного запаса устойчивости АСР.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (273)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)