Мегаобучалка Главная | О нас | Обратная связь


Понятие математических моделей, их классификация и свойства



2020-03-17 185 Обсуждений (0)
Понятие математических моделей, их классификация и свойства 0.00 из 5.00 0 оценок




Содержание

 

Введение

1. Математическое моделирование технических объектов

1.1 Понятие математических моделей, их классификация и свойства

1.2 Численные методы в математическом моделировании

1.3 Система MathCAD и её основные функции. Аппроксимация функции. Численное дифференцирование в MathCAD

2. Алгоритмический анализ задачи

2.1 Полная постановка задачи. Описание математической модели

2.2 Анализ исходных и результирующих данных

3. Описание реализации базовой модели

3.1 Описание реализации базовой модели электрической цепи

3.2 Описание исследований

3.3 Анализ полученных результатов и выводы по результатам исследований

Заключение

Список используемой литературы

 


Введение

 

В нынешний век высоких компьютерных технологий очень сложно представить себе инженера или конструктора, который не пользовался бы в своей деятельности электронной вычислительной машиной. Обладающие большой памятью и колоссальным быстродействием компьютеры позволяют современному человеку быстро и точно проводить сложнейшие математические расчёты, конструировать, решать экономические задачи, заниматься моделированием, переводить тексты на любые языки мира и многое другое. Мировые компьютерные сети позволяют общаться людям различных стран и континентов не выходя из дома.

Трудно перечислить все, что может электронная вычислительная машина. Она ценна ровно настолько, насколько ценен работающий на ней человек. Ценность же человека, работающего в тандеме с машиной, определяется тем, насколько профессионально этот человек сможет поставить машине задачу в форме, которая наиболее полно учитывает и использует все возможности электронной вычислительной машины.

В наше время практически ни одно даже самое мелкое предприятие не обходится без компьютерной техники. Компьютер является мощнейшим средством для реализации различных проектов и решения многих сложных задач математического и физического характера. Однако, без необходимого программного обеспечения компьютер практически ни на что не способен.

Компьютерные библиотеки обладают огромным потенциалом знаний. Появление таких прикладных программ, как Turbo Pascal, MathCad, Microsoft Word, Microsoft Excel, Microsoft Access и так далее, значительно упростило жизнь студентов. Дальнейшее развитие компьютерных технологий и пакетов прикладных программ ведёт к более быстрому и простому проведению всевозможных расчётов. Компьютер уже вошёл в жизнь каждого человека, и в дальнейшем каждый человек должен будет знать устройство компьютера и принципы работы с ним.

Основной дисциплиной непосредственно связанной с применением ЭВМ является вычислительная математика. Начался период бурного развития численных методов и их внедрения в практику. Только вычислительной машине под силу выполнить за сравнительно короткое время объём вычислений в миллионы, миллиарды и более операций, необходимых для решения многих современных задач. Численные методы разрабатывают и исследуют высококвалифицированные специалисты математики.

Что касается подавляющей части студентов не математических специальностей и инженерно-технических работников, то для них главной задачей является понимание основных идей методов решения математических задач, особенностей и областей их применения.

Все в мире программирования основано на взаимодействии человека с персональным компьютером и приемущественно осуществляется при помощи языков программирования. Однако в последнее время появились и стандартные средства, которые значительно облегчают работу разработчика. Одним из таких пакетов является MathCad. Данное программное обеспечение предоставляет значительные возможности для разработки программ для решения инженерных задач. Созданные в MathCad расчетные модели отличаются простотой и наглядностью, а также легко исправляются и дорабатываются.

Интегрированная система MathCad предназначена для решения различного рода вычислительных задач, алгоритмы которых описываются в общепринятых математических терминах и обозначениях.

В данной курсовой работе в среде MathCad было проведено исследование электрической цепи с переменной ёмкостью. Рассчитаны значения функции заряда на конденсаторе в зависимости от варьируемого параметра и функции заряда, а также построен сводный график всех функций заряда и подобрана аппроксимирующая зависимость по результатам опытов.

Приобретённые при выполнении навыки будут очень важны для дипломного проектирования и для дольнейшей инженерной деятельности.


Математическое моделирование технических объектов

 

Понятие математических моделей, их классификация и свойства

 

Моделирование представляет собой процесс замещения объекта исследования некоторой его моделью и проведение исследований на модели с целью получения необходимой информации об объекте. Модель - это физический или абстрактный образ моделируемого объекта, удобный для проведения исследований и позволяющий адекватно отображать интересующие исследователя физические свойства и характеристики объекта. Удобство проведения исследований может определяться различными факторами: легкостью и доступностью получения информации, сокращением сроков и уменьшением материальных затрат на исследование и др.

Различают моделирование предметное и абстрактное. При предметном моделировании строят физическую модель, которая соответствующим образом отображает основные физические свойства и характеристики моделируемого объекта. При этом модель может иметь иную физическую природу в сравнении с моделируемым объектом (например, электронная модель гидравлической или механической системы). Если модель и объект одной и той же физической природы, то моделирование называют физическим.

Физическое моделирование широко применялось до недавнего времени при создании сложных технических объектов. Обычно изготавливался макетный или опытный образец технического объекта, проводились испытания, в процессе которых определялись его выходные параметры и характеристики, оценивались надежность функционирования и степень выполнения технических требований, предъявляемых к объекту. Если вариант технической разработки оказывался неудачным, все повторялось сначала, т.е. осуществлялось повторное проектирование, изготовление опытного образца, испытания и т.д.

Физическое моделирование сложных технических систем сопряжено с большими временными и материальными затратами.

Абстрактное моделирование связано с построением абстрактной модели. Такая модель представляет собой математические соотношения, графы, схемы, диаграммы и т.п. Наиболее мощным и универсальным методом абстрактного моделирования является математическое моделирование. Оно широко используется как в научных исследованиях, так и при проектировании.

Математическое моделирование позволяет посредством математических символов и зависимостей составить описание функционирования технического объекта в окружающей внешней среде, определить выходные параметры и характеристики, получить оценку показателей эффективности и качества, осуществить поиск оптимальной структуры и параметров объекта. Применение математического моделирования при проектировании в большинстве случаев позволяет отказаться от физического моделирования, значительно сократить объемы испытаний и доводочных работ, обеспечить создание технических объектов с высокими показателями эффективности и качества. Одним из основных компонентов системы проектирования в этом случае становится математическая модель.

Математическая модель - это совокупность математических объектов и отношений между ними, адекватно отображающая физические свойства создаваемого технического объекта. В качестве математических объектов выступают числа, переменные, множества, векторы, матрицы и т.п. Процесс формирования математической модели и использования ее для анализа и синтеза называется математическим моделированием. В конструкторской практике под математическим моделированием обычно понимается процесс построения математической модели, а проведение исследований на модели в процессе проектирования называют вычислительным экспериментом. Такое деление удобно для проектировщиков и функционально вполне обосновано, поэтому в дальнейшем будем придерживаться этой терминологии.

Для осуществления вычислительного эксперимента на ЭВМ необходимо разработать алгоритм реализации математической модели.

Алгоритм - это предписание, определяющее последовательность выполнения операций вычислительного процесса. Алгоритм автоматизированного проектирования представляет собой совокупность предписаний, обеспечивающих выполнение операций и процедур проектирования, необходимых для получения проектного решения. Для наглядности алгоритмы чаще всего представляют в виде схем или графов, иногда дают их вербальное (словесное) описание. Алгоритм, записанный в форме, воспринимаемой вычислительной машиной, представляет собой программную модель. Процесс программирования называют программным моделированием.

Классификация математических моделей

Математические модели можно классифицировать по различным признакам. Если исходить из соотношений, которые выражают зависимости между состояниями и параметрами, то различают следующие модели:

детерминированные, когда при совместном рассмотрении этих соотношений состояние системы в заданный момент времени однозначно определяется через ее параметры, входную информацию и начальные условия;

стохастические, когда с помощью упомянутых соотношений можно определить распределения вероятностей для состояний системы, если заданы распределения вероятностей для начальных условий, ее параметров и входной информации.

По характеру изменения внутренних процессов выделяют непрерывные модели, в которых состояние изменяется в каждый момент времени моделирования;

дискретные модели, когда переходит из одного состояния в другое в фиксированные моменты времени, а на (непустых) интервалах между ними состояние не изменяется.

Если при классификации исходить из способа представления внутренних процессов для изучения, то модели разделяются на аналитические и имитационные.

Для аналитических моделей характерно, что процессы функционирования элементов записываются в виде некоторых математических схем (алгебраических, дифференциальных, конечно-разностных, предикатных и т.д.). Аналитическая модель может исследоваться одним из следующих способов: аналитическим, когда стремятся получить в общем, виде явные зависимости для искомых величин; численным, когда, не имея общего решения, удается найти частное решения или некоторые свойства общего решения, например, оценить устойчивость, периодичность, и т.п.

В имитационных моделях моделирующий алгоритм приближенно воспроизводит функционирование элементов во времени, причем элементарные явления, составляющие динамический процесс, имитируются с сохранением логической структуры и последовательности протекания во времени. Сущность этого метода моделирования обеспечивается реализацией на ЭВМ следующих видов алгоритмов: отображения динамики функционирования элементов, обеспечения взаимодействия элементов и объединения их в единый процесс; генерация случайных факторов с требующимися вероятностными характеристиками; статистической обработки и графической презентации результатов реализации имитационного эксперимента. Моделирующий алгоритм позволяет по исходным данным, содержащим сведения о начальном состоянии процесса и его параметрах, получать информацию о состоянии в произвольный момент времени.

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диа грамм и т.п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.

Математические модели и их свойства

На каждом уровне иерархии различают математические модели элементов и систем. Математические модели классифицируются:

по форме представления: инвариантные (представляют собой систему уравнений вне связи с методом решения), алгоритмические (модели связаны с выбранным численным методом решения и его реализацией в виде алгоритма), аналитические (отображаются явными зависимостями переменных), графические (схемные);

по характеру отображаемых свойств: функциональные (описывают процессы функционирования объектов), структурные (отображают только структуру и используются при решении задач структурного синтеза);

по степени абстрагирования: модели микроуровня с распределенными параметрами, модели макроуровня с сосредоточенными параметрами, модели метауровня;

по способу получения: теоретические, экспериментальные;

по учету физических свойств: динамические, статические, непрерывные, дискретные, линейные, нелинейные;

по способности прогнозировать результаты: детерминированные, вероятностные.

Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью, которая оценивается степенью совпадения предсказанного в процессе эксперимента на модели значений выходных параметров с истинными значениями.

При проектировании технических объектов используют множество видов математических моделей, в зависимости от уровня иерархии, степени декомпозиции системы, аспекта, стадии и этапа проектирования.

В общем случае уравнения математической модели связывают физические величины, которые характеризуют состояние объекта и не относятся к перечисленным выше выходным, внутренним и внешним параметрам. Такими величинами являются: скорости и силы - в механических системах; расходы и давления - в гидравлических и пневматических системах; температуры и тепловые потоки - в тепловых системах; токи и напряжения - в электрических системах.

Величины, характеризующие состояние технического объекта в процессе его функционирования, называют фазовыми переменными (фазовыми координатами). Вектор фазовых переменных задает точку в пространстве, называемом фазовым пространством. Фазовое пространство, в отличие от геометрического, многомерное. Его размерность определяется количеством используемых фазовых координат.

Обычно в уравнениях математической модели фигурируют не все фазовые переменные, а только часть из них, достаточная для однозначной идентификации состояния объекта. Такие фазовые переменные называют базисными координатами. Через базисные координаты могут быть вычислены значения и всех остальных фазовых переменных.

К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы, поэтому обычно для проектирования каждого объекта используют свою оригинальную модель.

Математические модели технических объектов, используемые при проектировании, предназначены для анализа процессов функционирования объектов и оценки их выходных параметров. Они должны отображать физические свойства объектов, существенные для решения конкретных задач проектирования. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.

Аналитическая модель представляет собой явные зависимости иcкомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений, используя табличные интегралы. К ним относятся также регрессионные модели, получаемые на основе результатов эксперимента.

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т.п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.

Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими переменными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа И-ИЛИ-дерева. Они позволяют аккумулировать накопленный опыт, используя описания всех существующих аналогов, известных из патентной литературы, и гипотетических объектов. Такие модели наиболее широко используют на метауровне при выборе технического решения.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений.

Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе изучения поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик". Эксперименты при этом могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используют физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа, Фурье и др.

Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей.

Линейные модели содержат только линейные функции фазовых переменных и их производных. Характеристики многих элементов реальных технических объектов нелинейные. Математические модели таких объектов включают нелинейные функции фазовых переменных и (или) их производных и относятся к нелинейным. (Тарасик В.П. Математическое моделирование технических систем. - Мн.: 1997).

 



2020-03-17 185 Обсуждений (0)
Понятие математических моделей, их классификация и свойства 0.00 из 5.00 0 оценок









Обсуждение в статье: Понятие математических моделей, их классификация и свойства

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (185)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)