Мегаобучалка Главная | О нас | Обратная связь


Пример условия, при котором возникает распределение Пуассона



2020-03-18 194 Обсуждений (0)
Пример условия, при котором возникает распределение Пуассона 0.00 из 5.00 0 оценок




Как уже говорилось, многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 3). Допустим, что случайное распределение точек удовлетворяет  следующим условиям:

1) Вероятность попадания того или иного числа точек на отрезок l зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределены на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность, т.е. математическое ожидание числа точек, приходящихся на единицу длины, через λ.

2) Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или иного числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3) Вероятность попадания на малый участок Δх двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины l и рассмотрим дискретную случайную величину Х – число точек, попадающих на этот отрезок. Возможные значения величины будут 0,1,2,…, m ,… Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. данный ряд продолжается неограниченно.

Докажем, что случайная величина Х распределена по закону Пуассона. Для этого надо подсчитать вероятность Р m того, что на отрезок попадет ровно m точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок Δх и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно λ·Δх (т. к. на единицу длины попадает в среднем λ точек). Согласно условию 3 для малого отрезка Δх можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание λ·Δх числа точек, попадающих на участок Δх, будет приближенно равно вероятности попадания на него одной точки (или, что в данных условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при Δх→0 можно считать вероятность того, что на участок Δх попадет одна (хотя бы одна) точка, равной λ·Δх, а вероятность того, что не попадет ни одной, равной 1- c ·Δх.

Воспользуемся этим для вычисления вероятности Pm попадания на отрезок l ровно m точек. Разделим отрезок l на n равных частей длиной  Условимся называть элементарный отрезок Δх «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок Δх окажется «занятым», приближенно равна λ·Δх= ; вероятность того, что он окажется «пустым», равна 1- . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как n независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью p= . Найдем вероятность того, что среди n отрезков будет ровно m «занятых». По теореме о повторных независимых испытаниях эта вероятность равна

 

,

 

или обозначим λ l = a:

 

.

 

При достаточно большом n эта вероятность приближенно равна вероятности попадания на отрезок l ровно m точек, т. к. попадание двух или больше точек на отрезок Δх имеет пренебрежимо малую вероятность. Для того, чтобы найти точное значение Р m, нужно перейти к пределу при n →∞:

 

 

Учитывая, что


 

и

 

,

 

получаем, что искомая вероятность выражается формулой

 

 

где а=λl, т.е. величина Х распределена по закону Пуассона с параметром а=λl.

Надо отметить, что величина а по смыслу представляет собой среднее число точек, приходящееся на отрезок l.

Величина R 1 (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок l попадет хотя бы одна точка: R 1 =1- e - a.

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой областью был отрезок l на оси абсцисс. Однако этот вывод легко можно распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью λ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д.,

то число точек Х, попавших в любую область D (плоскую или пространственную), распределяется по закону Пуассона:

 

,

 

где а – среднее число точек, попадающих в область D.

Для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности (λ= const) несущественно. Если выполнены два других условия, то закон Пуассона все-равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножением плотности λ на длину, площадь или объем, а интегрированием переменной плотности по отрезку, площади или объему.

Примеры из практики

1. Устройство состоит из 1000 элементов, работающих независимо друг от друга. Вероятность отказа любого элемента в течение времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. Т.к. по условию n =1000 достаточно велико, а m =0,002 мало, можно воспользоваться распределением Пуассона:

 

где а= np=1000·0,002=2.

2. При испытании легированной стали на содержание углерода вероятность того, что в случайно взятой пробе процент углерода превысит допустимый уровень, равна р=0,01. Считая применимым закон редких явлений, вычислить, сколько в среднем необходимо испытать образцов, чтобы с вероятностью р=0,95 указанный эффект наблюдался по крайней мере 1 раз.

Решение. События «указанный эффект наблюдался по крайней мере один раз» (обозначим через Р) и «указанный эффект не наблюдался ни одного раза» (обозначим через Q), очевидно, являются противоположными. Следовательно, P + Q =1, откуда

Р=1- Q =1- Pn (0)=1- e - a.

 

По условию Р=0,95, следовательно

е=0,05,

а= np =3,

 

откуда

 

 

Таким образом, искомое среднее число образцов, которое необходимо испытать, – 300 штук.

3. Вероятность выигрыша по одному лотерейному билету р=0,01. Сколько нужно купить билетов, чтобы выиграть хотя бы по одному из них с вероятностью Р, не меньшей, чем 0,98?

Решение. Вероятность выигрыша мала, а число билетов, которое нужно купить, очевидно, велико, поэтому случайное число выигрышных билетов имеет приближенно распределение Пуассона.

События «ни один из купленных билетов не является выигрышным» и «хотя бы один билет – выигрышный» – противоположные. Поэтому сумма вероятностей этих событий равна единице:

Р n (0)+ P =1, или Р=1-Р n (0)=1- =1-е.

 

По условию, Р≥0,98, или 1-е≥0,98. Откуда е≤0,02.

По таблице найдем е-3,9=0,02. Т.к. функция е – убывающая, предыдущее неравенство выполняется при а≥3,9, или np ≥3,9. Отсюда n ≥3,9/0,01=390.

Таким образом, надо купить не менее 390 билетов, чтобы выиграть хотя бы по одному из них.

Среднее число вызовов, поступающих на АТС в минуту, равно 120. Найти вероятность того, что за две секунды на АТС не поступит ни одного вызова; за две секунды на АТС поступит меньше двух вызовов.

Решение. Среднее число вызовов за две секунды равно:

 

 

Вероятность того, что на станцию в течение 2-ух секунд не поступит ни одного вызова равна:

 


Событие, состоящее в поступлении менее двух вызовов, означает, что на станцию либо не поступило ни одного вызова, либо поступил только один. Таким образом, вероятность поступления менее 2-ух вызовов за то же время равна:

 

 

5. Случайная величина Х – число электронов, вылетающих с нагретого катода электронной лампы в течение времени t, λ – среднее число электронов, испускаемых в единицу времени. Определить вероятность того, что за время t число испускаемых электронов будет меньше m (m Î N).

Решение. λ – среднее число электронов, t – время испускания, следовательно, а=λ t.

 

P=

 

6. С накаленного катода за единицу времени вылетает в среднем q(t) электронов, где t – время, протекшее с начала опыта. Найти вероятность того, что за промежуток времени длительности τ, начинающийся в момент t0, с катода вылетит ровно m электронов.

Решение. Находим среднее число электронов а, вылетающих с катода за данный отрезок времени:

 

 

По вычисленному, а определяем искомую вероятность:


Заключение

В заключение хочется отметить то, что распределение Пуассона является достаточно распространенным и важным распределением, имеющим применение как в теории вероятностей и ее приложениях, так и в математической статистике.

Многие задачи практики сводятся, в конечном счете, к распределению Пуассона. Его особое свойство, заключающееся в равенстве математического ожидания и дисперсии, часто применяют на практике для решения вопроса, распределена случайная величина по закону Пуассона или нет.

Также важен тот факт, что закон Пуассона позволяет находить вероятности события в повторных независимых испытаниях при большом количестве повторов опыта и малой единичной вероятности.

 

 


Список использованной литературы

1. Н.Ш. Кремер «Теория вероятностей и математическая статистика»: Учеб. пособие. М., 2004.

2. C.А. Айвазян, В.С. Мхитарян «Теория вероятностей и прикладная статистика»: Учеб. пособие. М., 2001.

3. Е.С. Кочетков «Теория вероятностей и математическая статистика»: Учеб. пособие. М., 2001.

4. В.А. Фигурин «Теория вероятности и математическая статистика»: Учеб. пособие. – Мн. ООО «Новое знание», 2000.

5. Л.П. Трошин «Теория вероятностей», МЭСИ. М.: 2004.

6. В.Е. Гмурман «Теория вероятностей и математическая статистика». Учеб. пособие. М.: высшее образование, 2006.



2020-03-18 194 Обсуждений (0)
Пример условия, при котором возникает распределение Пуассона 0.00 из 5.00 0 оценок









Обсуждение в статье: Пример условия, при котором возникает распределение Пуассона

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (194)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)