Мегаобучалка Главная | О нас | Обратная связь


Искровой разряд и его применение



2020-03-19 309 Обсуждений (0)
Искровой разряд и его применение 0.00 из 5.00 0 оценок




 

Если постепенно увеличивать напряжение между двумя электродами, находящимися в атмосферном воздухе и имеющими такую форму, что электрическое поле между ними не слишком сильно отличается от однородного (например, два плоских электрода с закругленными краями или два достаточно больших шара), то при некотором напряжении возникает электрическая искра. Она имеет вид ярко светящегося канала, соединяющего оба электрода, который обычно бывает сложным образом изогнут и разветвлен (см. приложение 1.2).

Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторого определенного значения Ек (критическая напряженность поля или напряженность пробоя), которая зависит от рода газа и его состояния. Для воздуха при нормальных условиях Ек » 3*106 В/м. Чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя.

Возникновение пробоя объясняется следующим образом: в газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества. При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при соударении. В результате образуется новый отрицательный электрон и положительно заряженный остаток - ион.

Свободный электрон 1 при соударении с нейтральной молекулой расщепляет ее на электрон 2 и свободный положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны 3 и 4 и свободные положительные ионы, и т.д (рис. 3.2.1).


Рис. 3.2.1

 

Такой процесс ионизации называют ударнойионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома - работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов.

Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионнойлавиной.

Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя.

Таким образом, при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами (ударная ионизация). Величина Ек увеличивается с увеличением давления. Отношение критической напряженности поля к давлению газа р для данного газа остается приблизительно постоянным в широкой области изменения давлений:

 

.(3.2.1)


Этот закон позволяет определить Ек при разных давлениях, если известно его значение при каком-либо одном давлении.

Напряжение пробоя понижается при воздействии на газ внешнего ионизатора. Если приложить к газовому промежутку напряжение, несколько меньшее пробойного, и внести в пространство между электродами зажженную газовую горелку, то возникает искра. Такое же действие оказывает и освещение отрицательного электрода ультрафиолетовым светом, а также другие ионизаторы.

Для объяснения искрового разряда вначале казалось естественным предположить, что основными процессами в искре являются ионизация электронными ударами в объеме и ионизация положительными ионами (в объеме или на катоде). Однако впоследствии выяснилось, что эти процессы не могут объяснить многие особенности образования искры. Остановимся для примера на скорости развития искрового заряда. Если бы в искре существенную роль играла ионизация положительными ионами, то время развития искры было бы по крайней мере того же порядка, что и время перемещения положительных ионов от анода до катода. Это время легко оценить - оно оказывается порядка 10-4 - 10-5 с. Между тем, опыт показывает, что время ее развития на несколько порядков меньше.

Объяснение большой скорости развития искры, так же как и других особенностей этой формы разряда, дано так называемой стримерной теорией искры, в настоящее время обоснованной прямыми экспериментальными данными. Согласно этой теории, возникновению ярко светящегося канала искры предшествует появление слабо светящихся скоплений ионизированных частиц (стримеров). Пронизывая газоразрядный промежуток, стримеры образуют проводящие мостики, по которым в последующие стадии разряда и устремляются мощные потоки электронов. Причиной возникновения стримеров является не только образование электронных лавин посредством ударной ионизации, но еще и ионизация газа излучением, возникающим в самом разряде (фотоионизация).

Схема развития стримера изображена на рис. 3.2.2.

 

Рис. 3.2.2

 

В виде конусов на этом рисунке показаны электронные лавины, зарождающиеся в точках вершин конусов и распространяющиеся от катода к аноду. Существенным в этой схеме является то обстоятельство, что, помимо первоначальной электронной лавины, зародившейся непосредственно у катода, происходит образование новых лавин в точках, расположенных далеко впереди от головы первоначальной лавины. Эти новые лавины возникают вследствие появления электронов в объеме газа в результате фотоионизации излучением, исходящим из лавин, возникших ранее (на рисунке это излучение показано схематически в виде волнистых линий). В процессе своего развития отдельные лавины нагоняют друг друга и сливаются вместе, в результате чего возникает хорошо проводящий канал стримера. Из приведенной схемы ясно, что вследствие возникновения многих лавин общий путь CD, проходимый стримером, намного больше расстояния АВ, проходимого одной первоначальной лавиной (различие в длинах АВ и CD в действительности намного больше, чем показано на рис. 3.2.2).

Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до 10000 °С, что приводит к его свечению. Быстрый нагрев газа ведёт к повышению давления, достигающему 107¸108 Па, и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде - характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и и Землёй или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания. При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией. Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла. Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики).

Искровой промежуток применяется в качестве предохранителя от перенапряжения (искровые разрядники) в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку, и опасны для жизни людей.

Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара, закрепленных на стойках 1 и 2. Вторая стойка с шаром может приближаться или удаляться от первой при помощи винта. Шары присоединяют к источнику тока, напряжение которого требуется измерить, и сближают их до появления искры. Измеряя расстояние при помощи шкалы на подставке, можно дать грубую оценку напряжению по длине искры (пример: при диаметре шара 5 см и расстоянии 0,5 см напряжение пробоя равно 17,5 кВ, а при расстоянии 5 см - 100 кВ). Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

 



2020-03-19 309 Обсуждений (0)
Искровой разряд и его применение 0.00 из 5.00 0 оценок









Обсуждение в статье: Искровой разряд и его применение

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (309)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)