Мегаобучалка Главная | О нас | Обратная связь


Глава 1. ИОНИЗАЦИЯ ГАЗОВ



2020-03-19 464 Обсуждений (0)
Глава 1. ИОНИЗАЦИЯ ГАЗОВ 0.00 из 5.00 0 оценок




СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ

Глава 1. ИОНИЗАЦИЯ ГАЗОВ

Глава 2. НЕСАМОСТОЯТЕЛЬНЫЙ И САМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЕ РАЗРЯДЫ

Глава 3. ВИДЫ САМОСТОЯТЕЛЬНОГО ГАЗОВОГО РАЗРЯДА

Тлеющий разряд и его применение

Искровой разряд и его применение

Коронный разряд и его применение

Дуговой разряд и его применение

Плазма и ее применение

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ионизации рекомбинация газ разряд плазма

 


ВВЕДЕНИЕ

 

Процесс протекания электрического тока через газ называют газовым разрядом. При обычных условиях газы почти полностью состоят из нейтральных атомов или молекул и, следовательно, являются диэлектриками.

Электрический ток в газах на первый взгляд не может существовать из-за отсутствия свободных заряженных частиц (электроны в атомах и молекулах газов прочно “связаны” с ядрами электростатическими силами). Однако, при передаче атому энергии порядка 10эВ (энергия, приобретаемая свободным электроном при прохождении через разность потенциалов в 10 В), последний переходит в ионизированное состояние (электрон уходит от ядра на сколь угодно большое расстояние).

В газах при комнатных температурах всегда присутствует очень небольшое количество ионизированных атомов, возникших под действием космического излучения (фотоионизация). При помещении такого газа в электрическое поле заряженные частицы начинают разгоняться, передавая нейтральным атомам набранную кинетическую энергия и ионизуя их. В результате развивается лавинообразный процесс нарастания числа свободных электронов и ионов - возникает электрический разряд. Характерное свечение разряда связано с выделением энергии при рекомбинации электронов и положительных ионов.

Типы электрических разрядов весьма разнообразны и сильно зависят от состава газа и внешних условий. В газах существуют несамостоятельные и самостоятельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой. Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны.

При самостоятельном разряде одним из способов ионизации атомов является ионизация электронным ударом. Ионизация электронным ударом становится возможна тогда, когда электрон на длине свободного пробега приобретает кинетическую энергию достаточную для совершения работы по отрыву электрона от атома.

Виды самостоятельных разрядов в газах - искровой, коронный, дуговой и тлеющий разряды.

Искровой разряд возникает между двумя электродами заряженными разными зарядами и имеющие большую разность потенциалов. Напряжение между разноименно заряженными телами достигает до 40 000 В. Искровой разряд кратковременный, его механизм - электронный удар. Молния - вид искрового разряда. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом линии электропередачи и поверхностью Земли, возникает особая форма самостоятельного разряда в газах, называемая коронным разрядом.

Электрический дуговой разряд был открыт русским ученым В. В. Петровым в 1802 г. При соприкосновении двух электродов из углей при напряжении 40-50 В в некоторых местах возникают участки малого сечения с большим электрическим сопротивлением. Эти участки сильно разогреваются, испускают электроны, которые ионизируют атомы и молекулы между электродами. Носителями электрического тока в дуге являются положительно заряженные ионы и электроны.

Разряд, возникающий при пониженном давлении, называется тлеющим разрядом. При понижении давления увеличивается длина свободного пробега электрона, и за время между столкновениями он успевает приобрести достаточную для ионизации энергию в электрическом поле с меньшей напряженностью. Разряд осуществляется электронно-ионной лавиной.

Явление электрического разряда в газах используется во многих областях науки и техники. Применение люминисцентных ламп вместо ламп накаливания может привести к существенной экономии электроэнергии. Использование катодного распыления позволяет изготавливать металлические зеркала высокого качества. Искровой промежуток применяется в качестве предохранителя от перенапряжения (искровые разрядники) в электрических линиях передач (например, в телефонных линиях). Свет ртутной дуги чрезвычайно богат ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко используют при лечении разнообразных болезней, а также при научных исследованиях как сильный источник ультрафиолетового излучения.

Таким образом, можно привести ряд особенностей, которые позволяют судить об актуальности данной темы в наше время.

Целью данной курсовой работы является изучение и систематизирование знаний по теме «Электрический ток в газах» и изучить границы применимости данного явления.

Для достижения этой цели были поставлены следующие задачи:

)проанализировать учебную и методическую литературу по данной теме;

)изучить явление прохождения электрического тока в газах и исследовать применение данного явления;

)рассмотреть виды электрического газового разряда и выяснить границы их применимости.

 


Глава 1. ИОНИЗАЦИЯ ГАЗОВ

 

Газы в естественном состоянии не проводят электричества. Если поместить в сухом атмосферном воздухе хорошо изолированное заряженное тело, например заряженный электрометр с хорошей изоляцией, то заряд электрометра долгое время практически остается неизменным.

Однако, подвергая газ различным внешним воздействиям, можно вызвать в нем электропроводность. Так, например, помещая вблизи заряженного электрометра пламя горелки, можно видеть, что заряд электрометра быстро уменьшается. Мы сообщили газу электропроводность, создавая в нем высокую температуру. Если бы вместо пламени горелки мы поместили вблизи электрометра подходящий источник света, мы также наблюдали бы утечку зарядов с электрометра.

Опыт показывает, что в газах под влиянием высокой температуры и различных излучений появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны.

Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a-, b- и g-лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Отрыв электрона от атома (ионизация атома) требует затраты определенной энергии - энергии ионизации. Она зависит от строения атома и поэтому различна для разных веществ. Для ионизации атома (или молекулы) необходимо совершить работу против сил взаимодействия между вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации Ai. Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения действия ионизатора число ионов в газе с течением времени уменьшается и конце концов ионы исчезают вовсе.

Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они воссоединяются в нейтральный атом. Точно так же при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба они превратятся в нейтральные атомы. Этот процесс взаимной ионизации ионов называется рекомбинацией ионов.

При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда.

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны.

Схема типичного опыта для изучения ионизации электронными ударами показана на рис. 1.1(опыты Джеймса Франка и Густава Герца).

 

Рис. 1.1

 

Исследуемый газ при давлении порядка 0,1 - 0,01 мм рт.ст. вводится в стеклянную трубку, которая сначала откачивается до высокого вакуума (для удаления других газов). Трубка имеет накаливаемый катод К, сетку С и коллектор ионов Кл. На сетку подается положительный (относительно катода) потенциал, который можно изменять при помощи делителя напряжения Д1 и измерять вольтметром V. На коллектор ионов накладывается отрицательный потенциал, на 0,5 - 1,0 В больший, чем потенциал катода. Эта небольшая разность потенциалов снимается с делителя напряжения Д2, положительный конец которого соединен с катодом.

Расстояние катод-сетка в таких трубках делают значительно меньшим, чем расстояние сетка-коллектор, и подбирают давление газа так, чтобы средняя длина свободного пробега электронов в газе была больше расстояния между сеткой и катодом. Поэтому электроны, испущенные катодом, движутся в пространстве катод-сетка практически без соударений, и если разность потенциалов (выраженная в вольтах), между сеткой и катодом равна U , то каждый электрон приобретает кинетическую энергию (выраженную в электронвольтах).

 

.

 

Электроны, ускоренные сеткой, испытывают затем соударения с атомами газа в пространстве между сеткой и коллектором.

Так как потенциал коллектора ниже, чем потенциал катода, то в отсутствии ионизации все электроны тормозятся, не долетая до коллектора, и поэтому ток через гальванометр равен нулю. Если, однако, постепенно повышать разность потенциалов Uмежду сеткойи катодом, то, когда энергия электронов сделается равной энергии ионизации, то в пространстве сетка - коллектор появятся положительный ионы. Они будут двигаться к коллектору, и гальванометр обнаружит ток. Поэтому, измеряя наименьший потенциал сетки U, при котором впервые появляется ток коллектора, можно найти энергию ионизацию атомов исследуемого газа. Метод Франка и Герца не является единственным методом измерения энергии ионизации. Она может быть определена также из исследования линейчатых спектров свечения разреженных газов и паров, причем с довольно большой точностью. Значения энергии ионизации, найденные по спектрам, хорошо совпадают с ее значениями, определенными методом электронных ударов.

В таблице 1 даны значения энергии ионизации некоторых атомов.

 

Таблица 1

Элемент He Ne Ar Hg Na K Rb
Энергия ионизации, эВ 24.5 21.5 13.9 10.4 5.12 4.32 4.68

 




2020-03-19 464 Обсуждений (0)
Глава 1. ИОНИЗАЦИЯ ГАЗОВ 0.00 из 5.00 0 оценок









Обсуждение в статье: Глава 1. ИОНИЗАЦИЯ ГАЗОВ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (464)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)