Мегаобучалка Главная | О нас | Обратная связь


Описание принципиальной схемы



2020-03-19 174 Обсуждений (0)
Описание принципиальной схемы 0.00 из 5.00 0 оценок




Содержание

 

Введение                                                                         3

Теоретическая часть                                                      4

Описание схемы                                                                   6

Описание программы                                                         13

Заключение                                                                          34

Библиографический список                                                35

Приложения                                                                        36


Введение

 

Курсовой проект предназначен для приобретения практических навыков проектирования несложных микропроцессорных систем различного назначения. Проект базируется на теоретической части дисциплины «Организация ЭВМ и систем». Задание на курсовой проект выдается руководителем проекта.

Курсовой проект выполняется с целью закрепления знаний по курсу «Организация ЭВМ и систем» и развития навыков самостоятельного проектирования микропроцессорных систем различного назначения.

Задачами курсового проекта являются:

· практическое овладение методикой проектирования устройств;

· синтез функциональной схемы микропроцессорной системы на основе анализа исходных данных;

· получение навыков разработки аппаратного и программного обеспечения микропроцессорной системы;

· дальнейшее развитие навыков функционально-логического, схемотехнического и конструкторского проектирования, оформления и выпуска конструкторской документации в соответствии с ГОСТ.

Для решения перечисленных задач необходимы знания не только курса «Организация ЭВМ и систем», но и ряда смежных дисциплин, а также умение пользоваться нормативно-справочной информацией.

Одним из основных направлений научно-технического прогресса в настоящее время является развитие и широкое применение изделий микроэлектроники в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами.

Одним из примеров являются микроконтроллеры, производимые фирмой Microchip Technology. Это семейство 8-разрядных микроконтроллеров отличается низкой ценой, низким энеpгопотpеблением и высокой скоpостью. Микроконтроллеры имеют встpоенное ЭППЗУ пpогpаммы, ОЗУ данных и выпускаются в 18 и 28 выводных коpпусах. Для изделий, пpогpамма котоpых может меняться, либо содеpжит какие-либо пеpеменные части, таблицы, паpаметpы калибpовки, ключи и т.д., выпускается электрически стираемый и пеpепpогpаммиpуемый микроконтpоллеp PIC16F84. Он также содержит электрически пеpепpогpаммиpуемое ПЗУ данных. Именно такой контpоллеp и будем использовать для разработки устройства ультразвукового измерения дальности.


Теоретическая часть

 

Работа устройства ультразвукового измерения дальности основывается на явлении распространения звуковых волн в воздушной среде и отражения их в процессе распространения от других сред (контролируемых тел).

Информация о расстоянии до контролируемого тела, точнее некоторой отражающей зоны, принадлежащей поверхности контролируемого тела, определяется временным запаздыванием принимаемого сигнала относительно излучаемого. Примерно таким же образом летучие мыши ориентируются в пространстве: они излучают вперед направленный пучок ультразвуковых колебаний и ловят отраженный сигнал. Звуковые волны распространяются в воздушной среде с определенной скоростью, поэтому по задержке прихода отраженного сигнала можно с достаточной степенью точности судить, на каком расстоянии находится тот предмет, который отразил звук.

Ультразвуковой дальномер производит измерение расстояния до контролируемого тела по схеме эхо-локации (см. рис 1).

 

Рис. 1. Схема эхо-локации.

Для измерения расстояний в воздушной среде используются пьезокерамические преобразователи (типа МУП-3 и МУП-4, произведенные “ЭЛПА” г. Зеленоград), работающие на 40 кГц частоте. Два пьезокерамических преобразователя (излучающий и приемный), подобранные так, чтобы резонансная частота излучения излучающего, совпадала с резонансной частотой приема приемного, образуют акустический блок.

Преимуществами использования таких преобразователей в воздушной среде являются: сравнительная простота излучения и приема колебаний, компактность приемоизлучающих элементов аппаратуры, высокая устойчивость к шумовому, химическому и оптическому загрязнению окружающей среды, возможность работы в агрессивных средах при высоких давлениях, возможность значительного удаления вторичной аппаратуры от места измерений, длительный срок службы, простота в использовании, сравнительно малая стоимость, практически мгновенная готовность к работе после включения, нечувствительность к электромагнитным помехам, высокая надежность, невосприимчивость органов слуха человека к ультразвуку используемой частоты (40КГц) и ряд других.

Примерами применения разрабатываемого ультразвукового дальномера могут служить: контроль дистанции между автотранспортом при его движении в условиях недостаточной видимости на небольших скоростях, измерение уровня заполнения резервуаров жидким веществом, уровня загрузки бункеров или кузовов автомобилей сыпучим или дробленым материалом, контроль размеров продукции, измерение дистанции от борта судна до причальной стенки и др.


Описание принципиальной схемы

 

Принципиальная электрическая схема проектируемого устройства представлена в приложении. Представленную схему можно разбить на 5 функциональных блоков:

1) блок питания;

2) блок передатчика;

3) блок приемника;

4) блок индикации;

5) блок цифрового управления.

Рассмотрим порядок работы каждого из них.

 

Рис. 2. Блок питания.

 

Блок питания представлен на рис. 2. При включении сетевого выключателя S1 на первичную обмотку трансформатора TV1 поступает переменное напряжение величиной в 220В. Со вторичной обмотки трансформатора снимается пониженное до 7,5В переменное напряжение. После прохождения через диодный мост V1-V4 мы получаем выпрямленное, несглаженное напряжение величиной около 7В, т.к. существует некоторое небольшое падение напряжения на диодах. Пульсации полученного выпрямленного напряжения сглаживает электролитический конденсатор С2, а керамический конденсатор С1 предназначен для фильтрации высокочастотных сетевых помех. Затем напряжение стабилизируется при помощи интегрального стабилизатора напряжения DA1 и фильтруются высоко и низкочастотные помехи с помощью конденсаторов С3 и С4 соответственно. Диодный мост V1-V4 собран на кремниевых низкочастотных диодах допускающих напряжение до 100В при токе не более 10А. Интегральный стабилизатор напряжения DA1 (КР142ЕН5В) имеет следующие характеристики: Uвых=5В – выходное напряжение;

Iмакс=1,5А – максимальный ток нагрузки;

Pмакс=10Вт – максимальная мощность;

включение – плюсовое – тип подключения.

Данная схема блока питания является типовой.

 

 

Рис. 3. Блок передатчика.

 

Блок передатчика представлен на рис. 3. Представленный блок выполнен по схеме усилителя с общим эмиттером, работающего в ключевом режиме. Ток на выводах микроконтроллера DD2 не должен превышать максимально разрешенный ток величиной в 20мА, при напряжении в 5В. Тогда по закону Ома: R=U/I или R=5/0,020=250Ом. Для R14 был выбран резистор номиналом в 300Ом для обеспечения более стабильной работы схемы. Резистор R15 служит для обеспечения работы транзистора Т5 по постоянному току, т.е. обеспечивает заряд паразитной емкости транзистора. Его номинал взят из типовой схемы подключения. В качестве излучателя Qz2 использован пьезокерамический ультразвуковой преобразователь МУП-3, (т.к. он обладают достаточно высокой эффективностью, по заверениям производителя) основные характеристики которого представлены в таблице 1.

 

Таблица 1. Характеристики ПКУП МУП-3

Наименование параметра, единица измерения Значение
Частота максимальной передачи, кГц 37…45
Звуковое давление на расстоянии 0,3 м при Uвх=5В на частоте максимального излучения, дБ 100
Чувствительность на частоте максимального приема, мВ/Па 20
Ширина полосы излучения по уровню 0,5, кГц 1,8
Ширина полосы приема по уровню 0,5, кГц 1,0
Диаграмма направленности, Град  
По уровню 0,7 макс. 44
По уровню 0,5 макс. 74
Емкость на частоте 1 кГц, пФ 1300
Входной импеданс на частоте максимального излучения, кОм 0,5
Предельное допустимое значение напряжения сигнала на входе, В 12

 

Биполярные транзисторы типа n-p-n КТ972 используемые в схеме имеют следующие параметры:

- Uкбои=60В - максимально допустимое импульсное напряжение коллектор-база;

- Uкэои=60В - максимально допустимое импульсное напряжение коллектор-эмиттер;

- Iкmaxи=4000мА - максимально допустимый импульсный ток коллектора;

- Pкmaxт=8Вт - максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом;

- h21э≥750 - статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером;

- Iкбо≤1000мкА - обратный ток коллектора;

- fгр≥200МГц - граничная частота коэффициента передачи тока в схеме с общим эмиттером;

- Uкэн<1,5В - напряжение насыщения коллектор-эмиттер.

 

 

Рис. 4. Блок приемника.

 

Блок приемника изображен на рис. 4. Блок приемника выполнен по схеме усилителя с общим эмиттером. Максимальный коэффициент усиления для усилителя выполненного по схеме с общим эмиттером рассчитывается из соотношения резисторов R19 и R22. Т.е. 10000/10=1000. Резисторы R16 и R18 служат для стабилизации рабочей точки транзистора. Соотношение их номиналов определяет положение рабочей точки транзистора Т6. Резистор R13 подтягивает выход приемника к земле, когда нет сигнала с усилителя. Резистор R17 служит для установки режима чувствительности ультразвукового датчика Qz3. Конденсаторы С7 и С8 фильтруют постоянную составляющую. В качестве излучателя Qz3 использован пьезокерамический ультразвуковой преобразователь МУП-4, (т.к. он обладают достаточно высокой чувствительностью, по заверениям производителя) основные характеристики которого представлены в таблице 2.


Таблица 2. Характеристики ПКУП МУП-4

 

Наименование параметра, единица измерения Значение
Частота максимальной передачи, кГц 37…45
Звуковое давление на расстоянии 0,3 м при Uвх=5В на частоте максимального излучения, дБ 96
Чувствительность на частоте максимального приема, мВ/Па 30
Ширина полосы излучения по уровню 0,5, кГц 0,5
Ширина полосы приема по уровню 0,5, кГц 0,5
Диаграмма направленности, Град  
По уровню 0,7 макс. 45
По уровню 0,5 макс. 70
Емкость на частоте 1 кГц, пФ 2500
Входной импеданс на частоте максимального излучения, кОм 0,2
Предельное допустимое значение напряжения сигнала на входе, В 12

 

 

Рис. 5. Блок индикации.

 

Блок индикации представлен на рис. 5. DD1 – дешифратор семи сегментного индикатора. Он преобразует входной двоичный код в символы семи сегментного индикатора. Резистор R20 подтягивает вход 3 разрешения работы дешифратора к напряжению +5В. Резисторы R5-R11 служат для ограничения тока через сегменты индикаторов. Резисторы R1-R4 служат для ограничения тока через базы транзисторов Т1-Т4 и обеспечивают защиту выходов микроконтроллера. Транзисторы Т1-Т3 предназначены для коммутации питания подаваемого на индикаторы. Транзистор Т4 коммутирует включение точки на индикаторах. Светодиодные индикаторы служат для отображения информации. На входе питания индикатор имеет напряжение около 4,5В, получаемое за счет того, что транзисторы Т1-Т3 подключены по схеме эмиттерного повторителя. На переходе база-эмиттер имеет место небольшое, около 0,5В, падение напряжения, т.е. 5-0,5=4,5В (напряжение на входе питания индикатора). Ток через выводы микроконтроллера на должен превышать максимальный разрешенный ток величиной в 20мА, при напряжении в 5В. Тогда по закону Ома имеем: R=U/I или R=5/0,020=250Ом. Для R1-4 был выбран номинал в 300Ом для обеспечения более стабильной работы схемы. Согласно документации на индикаторы они должны иметь входное напряжение не более 2,5В при токе 20мА. Т.к. мы имеем на входе питания индикатора напряжение в 4,5В – следует его уменьшить. Лишние 2В гасятся с помощью резисторов R5-R11. Их номинал: 2В/0,020А=100Ом. В качестве HL1…HL3 выбраны индикаторы цифровые красного цвета свечения КЛЦ202В (арсенид-галлия-алюминия) в пластмассовом корпусе, состоящие из дискретных элементов, изготовленные по эпитаксиально-диффузионной технологий. Индикатор имеет 7 сегментов и децимальную точку, излучающие при подаче прямого тока. Различные комбинации элементов, обеспечиваемые внешней коммутацией, позволяют воспроизвести любую цифру от 0 до 9 и децимальную точку. Высота знака 20 мм. Параметры индикаторов и их принципиальная схема представлены ниже. Биполярные транзисторы типа n-p-n КТ3102 используемые в схеме имеют следующие параметры:

- Uкбои=50В - максимально допустимое импульсное напряжение коллектор-база;

- Uкэои=50В - максимально допустимое импульсное напряжение коллектор-эмиттер;

- Iкmaxи=200мА - максимально допустимый импульсный ток коллектора;

- Pкmaxт=0,25Вт - максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом;

- h21э≥200 - статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером;

- Iкбо≤0,05мкА - обратный ток коллектора;

- fгр≥150МГц - граничная частота коэффициента передачи тока в схеме с общим эмиттером;

 

Таблица 3. Основные электрические параметры КЛЦ202В

Наименование параметров, режим измерения,единица измерения Буквенное обозначение Не менее Не более
Средняя сила света элемента отображения при Iпр=20 мА , мкд 0,5 .
Средняя сила света точки при Iпр=20 мА , мкд 0,07 .
Постоянное прямое напряжение для элемента при Iпр=20 мА , В Uпр . 2,5
Постоянное прямое напряжение для точки при Iпр=20 мА , В Uпр . 2,5
       

Рис. 6. Схема электрическая принципиальная КЛЦ202В.

 

 

Рис.7. Блок цифрового управления.

Блок цифрового управления представлен на рис. 7. Блок цифрового управления представляет собой однокристальный микроконтроллер PIC16C84 имеющий подключения согласно технической документации производителя. Между входами питания микроконтроллера 14 и 5 ставится керамический конденсатор С9 обеспечивающий сглаживание пульсаций напряжения вызванных работой схемы. Ко входам OSC1 и OSC2 микроконтроллера подключен керамический резонатор QZ1 после которого установлены конденсаторы С5 и С6 необходимые для обеспечения правильного функционирования, согласно требованию производителя. Вход 1 микроконтроллера подтянут к земле через резистор R12 номиналом 1кОм, что является типовой защитой от помех в том случае, когда кнопка S2 разомкнута. Цепочка из резистора R21 и конденсатора С10 является типичной схемой подключения входа MCLR микроконтроллера (сброс памяти при включении питания) и обеспечивают необходимую задержку по времени для стабильного запуска микроконтроллера. Керамический резонатор QZ1 на 4.0 МГц имеет следующие параметры:

- резонансная частота,кГц: 4000;

- точность настройки (при 25 С) ,%: 0.3;

- температурный коэффициент (в диапазоне -20…+80С) ,%: 0.3;

- максимальное резонансное сопротивление ,Ом: 30;

- встроеный конденсатор,пФ: 30;

- рабочая температура,С: -20…+80.


Описание программы

 

Для удобства программа, приведенная в приложении, разбита на отдельные подпрограммы, которые взаимодействуют друг с другом согласно приведенной ниже обобщенной блок схеме программы.

Обобщенная блок-схема

Рис. 8. Обобщенная блок-схема.

Более подробно рассмотрим каждый блок приведенной на рис. 8. обобщенной блок схемы.

Список директив, файл, слово CPU

Данный блок соответствует приведенной ниже части программы.

;==============================================================

;                      программа для ультразвукового дальномера

;==============================================================

                                                   ;список директив

list         P=16C84                  ;директива определяющая тип процессора

#include <P16C84.INC>        ;файл, описывающий специфические переменные, соответствующие процессору

_config  b'00000000000001' ;слово конфигурации CPU

;==============================================================

С помощью директивы list указываем ассемблеру тип процессора. Подключаем соответствующий файл описания. Затем следует слово конфигурации CPU, которое при программировании микроконтроллера будет размещено по адресу расположенному за пределами пользовательской памяти программ. Слово конфигурации CPU содержит 14 бит. Биты 13-8 CP – защита программного кода (1=защита отключена, 0=защита установлена). Выбираем 0. Бит 7 DP – защита памяти данных EEPROM (1=защита отключена, 0=защита установлена). Выбираем 0. Биты 6-4 CP – защита программного кода (1=защита отключена, 0=защита установлена). Выбираем 0. Бит 3 PWRTE – разрешение задержки при включении питания (1=задержка отключена, 0=задержка установлена). Выбираем 0. Бит 2 WDTE – разрешение включения сторожевого таймера (1=сторожевой таймер включен, 0=сторожевой таймер отключен). Выбираем 0. Биты 1-0 FOSC1-FOSC0 – выбор режима тактового генератора (11=RC-генератор, 10=HS-резонатор, 01=XT-резонатор, 00=LP-резонатор). Выбираем 01 т.к. используем стандартный керамический резонатор 4МГц.

 

Описание переменных

 

Данный блок соответствует приведенной ниже части программы.

;==============================================================

;описание используемых переменных ;(назначение адресов ячеек для хранения переменных)

NUMIMP equ 0x0C ;рабочая переменная для подсчета числа импульсов

TIMER1 equ 0x0D ;рабочая переменная для подсчета времени 1

TIMER2 equ 0x0E ;рабочая переменная для подсчета времени 2

LAPSE  equ 0x0F ;рабочая переменная для подсчета погрешности перевода времени

DIGIT1 equ 0x10 ;рабочая переменная индикатора дециметров

DIGIT2 equ 0x11 ;рабочая переменная индикатора метров

DIGIT3 equ 0x12 ;рабочая переменная индикатора декаметров

;==============================================================

В этом блоке описывается в каких ячейках ОЗУ (регистрах общего применения) будут хранится значения наших переменных. Назначение переменных понятно из комментариев приведенной выше части листинга программы.


Исполняемая программа

 

Данный блок соответствует приведенной ниже части программы.

 

;==============================================================

                                 ;исполняемая программа

    org 0х000             ;вектор сброса процессора, начальный адрес

    clrf PORTA ;очистили выходные защелки порта А

    clrf PORTB ;и порта В

    clrf TMR0   ;очистка таймера TMR0

    bsf STATUS, RP0 ;включили банк 1

    movlw   b’00011110’  ;настроили на вывод линию RA0,

    movwf   PORTA ;остальные линии порта A на ввод

    movlw   b’00000000’  ;настроили на вывод все линии порта B

    movwf   PORTB ;RB0…RB7

    bcf OPTION_REG, 7 ;включили подтягивающие резисторы

    bcf OPTION_REG, 5 ;включили режим таймера для TMR0

    bcf STATUS, RP0 ;включили банк 0

;==============================================================

Указываем адрес начала программ, вектор сброса процессора. Обнуляем значения в выходных защелках обеих портов. Обнуляем значение таймера. Затем установив в 1 бит RP0 регистра STATUS, мы получаем доступ к регистровому банку 1. Теперь обращаясь к регистрам PORTA и PORTB, мы обращаемся не к выходным защелкам, а к регистрам состояния этих портов, и настраиваем часть линий на ввод, а часть линий на вывод, что соответствует схеме приведенной в приложении. Используя бит 7 RBPU регистра OPTION_REG включаем встроенную нагрузку порта B, для чего устанавливаем бит в 0. С помощью бита 5 T0CS выбираем источник тактирования для таймера TMR0. Для использования внутренней тактовой частоты CLKOUT, устанавливаем в 0 этот бит. В конце установив в 0 бит RP0 регистра STATUS, мы получаем доступ к регистровому банку 0.

 



2020-03-19 174 Обсуждений (0)
Описание принципиальной схемы 0.00 из 5.00 0 оценок









Обсуждение в статье: Описание принципиальной схемы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (174)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)