Мегаобучалка Главная | О нас | Обратная связь

Билет №6. Ориентирование линий. Дирекционный угол. Связь его с азимутами. Сближение меридианов





Углом ориентирования, применяемым при использовании системы плоских прямоугольных координат Гаусса-Крюгера, является дирекционный угол.

Дирекционным углом – называется угол между северным направлением осевого меридиана или линии ему параллельной и заданным направлением

Угол g между северным направлением географического меридиана и направлением оси абсцисс х прямоугольных координат (то есть линии, параллельной осевому меридиану) называется сближением меридианов.

При отклонении оси абсцисс к востоку от истинного меридиана, сближение меридианов считают положительным, а при отклонении к западу - отрицательным. При этом справедлива формула (рис. 3.2 б) А = a + g,

где a - дирекционный угол, g - сближение меридианов.

Приближенно сближение меридианов равно g = Dl sinj,

где Dl - разность долгот осевого и географического меридиана данной точки; j - широта точки.

На рис. 3.3 показано соотношение между азимутами и дирекционными углами в пределах одной зоны системы прямоугольных координат. Легко заметить, что для точек расположенных к востоку от осевого меридиана зоны сближение меридианов положительное, а к западу – отрицательное. При этом дирекционные углы в разных точках прямой линии равны a1 = a2 = a3. Поэтому обратный дирекционный угол в точке 3 отличается от прямого в точке 1 ровно на 180°, то есть a1-3 = a3-1 ± 180°.

Азимуты же в разных точках прямой различаются А1 ¹ А2 ¹ А3, что обусловлено различием сближения меридианов. Поэтому и А1-3 ¹ А3-1 ± 180°.

 

Рис. 3.3. Связь между азимутами и дирекционными углами: 1 – в западной половине зоны; 2 – на осевом меридиане; 3 – в восточной половине зоны; Р – полюс; 1Р, 3Р – меридианы; 2Р – осевой меридиан.

При использовании местной системы координат направление оси абсцисс не связано с направлением осевого меридиана координатной зоны, и тогда дирекционные углы отсчитывают от положительного направления оси абсцисс х.

 

 

Билет №7 и №8. Прямая и обратная геодезические задачи в системе плоских прямоугольных координат.



При вычислительной обработке выполненных на местности измерений, при проектировании инженерных сооружений и расчетах для перенесения проектов в натуру возникает необходимость решения прямой и обратной геодезических задач.

(7) Прямая геодезическая задача. По известным координатам х1 и у1 точки 1, дирекционному углу a1-2 и расстоянию d1-2 до точки 2 требуется вычислить ее координаты х2, у2.

Рис. 3.4. К решению прям ой и обратной еодезических задач  

 

(8) Обратная геодезическая задача. По известным координатам х1, у1 точки 1 и х2, у2 точки 2 требуется вычислить расстояние между ними d1-2 и дирекционный угол a1-2.

Из формул (3.5) и рис. 3.4 видно, что Для определения дирекционного угла a1-2 воспользуемся функцией арктангенса. При этом учтем, что компьютерные программы и микрокалькуляторы выдают главное значение арктангенса w = ,

лежащее в диапазоне -90°£w£ +90°, тогда как искомый дирекционный угол a может иметь любое значение в диапазоне 0°£ a £ 360°.

Формула перехода от w к a зависит от координатной четверти, в которой расположено заданное направление или, другими словами, от знаков разностей Dy = y2 - y1 и Dx = х2 - х1(см. таблицу и рис. 3.5).

Расстояние между точками вычисляют по формуле

или другим путем – по формулам

Программами решения прямых и обратных геодезических задач снабжены, в частности, электронные тахеометры, что дает возможность непосредственно в ходе полевых измерений определять координаты наблюдаемых точек, вычислять углы и расстояния для разбивочных работ.

 

Билет №9. План и карта. Масштабы: численный, именованный, линейный, поперечный. Цифровая модель местности, цифровая и электронная карты.

Планом называется уменьшенное подобное изображение горизонтальной проекции небольшого участка местности.

Для составления плана местности расположенные на ней точки проецируют на уровенную поверхность по направлению отвесных линий. Ввиду малости участка отвесные линии оказываются практически параллельными, а фрагмент уровенной поверхности может рассматриваться как плоскость. Полученную проекцию местности уменьшают и изображают на плане. Степень уменьшения характеризуется масштабом плана.

Масштабом называется отношение длины отрезка на плане к длине горизонтальной проекции соответствующего отрезка местности. Масштаб записывают в виде дроби с числителем, равным единице, и знаменателем, показывающим, во сколько раз уменьшены на плане длины линий. При строительстве железных дорог для выбора варианта трассы используют планы масштабов 1:2000 и 1:5000, для рабочего проектирования - 1:1000 и 1:2000, для проектирования мостов, тоннелей, станций - 1:500 ¸ 1:2000.

Наряду с представлением масштаба в виде дроби (численного масштаба) пользуются именованным масштабом - его словесным описанием, например: “в одном сантиметре 20 метров”, что соответствует масштабу 1:2000.

Для измерения расстояний на плане, под его нижней рамкой, помещают линейный масштаб (рис. 4.1), на котором несколько раз отложено одно и то же расстояние, называемое основанием масштаба и равное обычно 2 см. Крайнее левое основание делят на более мелкие отрезки. Деления линейного масштаба оцифровывают в метрах.

Картой называют уменьшенное и обобщённое изображение на плоскости всей земной поверхности или значительных её частей. Для изготовления карты объекты местности проецируют на поверхность земного эллипсоида и полученное изображение переносят на плоскость. Такой перенос невозможно выполнить без искажений. Каковы будут искажения, определяется картографической проекцией – законом перехода от геодезических координат объектов к плоским координатам карты. В геодезии чаще всего пользуются равноугольными (или иначе - конформными) проекциями, сохраняющими без искажений углы и очертания малых объектов. Карты классифицируют также по виду изображения на них меридианов и параллелей. В конических проекциях параллели изображаются концентрическими окружностями, а меридианы – радиальными прямыми, углы между которыми пропорциональны разностям долгот. В цилиндрических проекциях линии меридианов и параллелей изображаются взаимно перпендикулярными прямыми.

Топографические карты в России издают в поперечной цилиндрической проекции Гаусса - конформной проекции, в которой прямыми линиями без искажений изображаются осевой меридиан зоны и экватор.

В условиях применения компьютерных технологий, наряду с изображениями местности на бумажных носителях - картами и планами, используются их цифровые аналоги.

Цифровой моделью местности (ЦММ) называется представленное в виде цифровых кодов и хранимое на магнитных носителях логико-математическое описание местности, адекватное по содержанию плану местности. Основным содержанием ЦММ является топографическая информация: координатыи высоты точек, очертания объектов, их свойства. ЦММ содержит и общую информацию - название участка, система координат и высот, номенклатура.

Цифровой картой называют цифровую модель значительного участка земной поверхности, сформированную с учётом генерализации изображаемых объектов и принятой картографической проекции.

Электронной картой называется изображение местности на экране дисплея, полученное на основе цифровой карты

 





Читайте также:


Рекомендуемые страницы:


Читайте также:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...

©2015 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.004 сек.)