Мегаобучалка Главная | О нас | Обратная связь


Упадок теории супергравитации



2015-11-20 714 Обсуждений (0)
Упадок теории супергравитации 0.00 из 5.00 0 оценок




 

Со временем, однако, в теории супергравитации обнаружились недостатки. Несмотря на интенсивные поиски, ни в одном эксперименте не удалось выявить частиц-суперпартнеров. К примеру, у электрона со спином 1/2 не оказалось партнера с нулевым спином. До сих пор в нашем бедном энергией мире так и не было получено экспериментальным путем ни единого доказательства существования суперпартнеров. Тем не менее физики, работающие в этой области, твердо убеждены, что в момент сотворения, сопровождающийся колоссальным всплеском энергии, всем частицам соответствовали их суперпартнеры. Только при наличии такой невероятной энергии можно увидеть идеально суперсимметричный мир.

По прошествии нескольких лет, когда спала волна живого интереса и прошло множество международных конференций, стало ясно, что применить эту теорию к квантам невозможно; в итоге была развеяна иллюзия относительно теории исключительно из «мрамора». Подобно всем другим попыткам создать теорию материи только из «мрамора», теория супергравитации потерпела фиаско по элементарной причине. Сколько мы ни пытаемся вычислять величины с помощью подобных теорий, результатом оказываются бессмысленные бесконечности. Несмотря на то что в данном случае бесконечностей меньше, чем возникает при попытке применить исходную теорию Калуцы-Клейна, новая теория по-прежнему остается неперенормируемой.

Этим проблемы не исчерпываются. Высшая симметрия 0(8), которую могла содержать супергравитация, оказалась непригодной для симметрии Стандартной модели. Выяснилось, что супергравитация — всего лишь очередной этап долгого путешествия к объединенной теории Вселенной. Она решила одну проблему (превращение «дерева» в «мрамор»), только чтобы пасть жертвой нескольких других. Но, как только интерес к супергравитации начал угасать, появилась новая теория — вероятно, самая неожиданная и вместе с тем наиболее эффективная физическая теория из всех когда-либо предложенных: десятимерная теория суперструн.

 

 

Суперструны

 

Теория струн — физика XXI в., случайно попавшая в XX в.

Эдвард Виттен

 

Эдвард Виттен из Института перспективных исследований в Принстоне, Нью-Джерси, лидирует в сфере теоретической физики. В настоящее время Виттен — «вожак стаи», блистательный специалист в области физики высоких энергий, задающий тон в научных сообществах подобно тому, как Пикассо задавал тон в мире искусства. Сотни физиков благоговейно изучают его труды, надеясь заметить проблеск новаторской идеи, прокладывающей им дорогу. Его коллега по Принстону Сэмюэл Трейман говорит: «Он возвышается над остальными более чем на голову. Не одна группа людей уже двинулась вслед за ним по совершенно новому пути. Он предлагает искусные доказательства, от которых у слушателей захватывает дух». И Трейман заключает: «Не стоит разбрасываться сравнениями с Эйнштейном, но когда речь идет о Виттене…»[72]

Виттен вырос в семье физиков. Его отец Луис Виттен — профессор физики в Университете Цинциннати, ведущий специалист по общей теории относительности Эйнштейна. (Вообще-то, его отец временами заявляет, что его величайшим вкладом в физику стало рождение сына.) Его жена Кьяра Наппи занимается теоретической физикой.

Виттен не похож на других физиков. У большинства ученых Роман с физикой начинается сравнительно рано (в среднем и даже в младшем школьном возрасте). Виттен поначалу специализировался на истории в Университете Брандейса и проявлял нескрываемый интерес к лингвистике. Окончив учебу в 1971 г., во время президентской предвыборной кампании он работал в команде Джорджа Макговерна, который даже написал ему рекомендацию в аспирантуру. Виттен публиковал статьи в журналах The Nation и New Republic. (Журнал Scientific American прокомментировал интервью с Виттеном: «Да, бесспорно, самый умный человек в мире — либеральный демократ»[73].)

Как только Виттен избрал своей профессией физику, он рьяно взялся за ее изучение, закончил аспирантуру в Принстоне, преподавал в Гарварде, а в возрасте 28 лет получил должность профессора опять-таки в Принстоне. Кроме того, он удостоился престижной стипендии Макартура (в прессе ее иногда называют «наградой для гениев»). Его работы оказали глубокое влияние на сферу математики. В 1990 г. Виттен был награжден Филдсовской медалью — в мире математики эта награда не менее престижна, чем Нобелевская премия.

Большую часть времени Виттен сидит и смотрит в окно, производя в уме сложные преобразования. Его жена пишет: «Все вычисления он делает только в уме. Мне требуется заполнить выкладками несколько страниц, чтобы разобраться в вопросе. А Эдвард садится за стол, только чтобы вычислить знак минуса или степень двойки»[74]. Виттен говорит: «Большинство людей, не сведущих в физике, вероятно, считают, что физики занимаются преимущественно сложными расчетами, но суть их работы на самом деле не в этом. А в том, что физика — это прежде всего концепции, желание понимать идеи, принципы устройства мира»[75].

Очередной проект Виттена стал самым масштабным и дерзким в его карьере. Новая теория суперструн вызвала в мире физики сенсацию, претендуя на звание теории, способной объединить эйнштейновскую гравитацию с квантовой теорией. Однако Виттена не устраивает нынешняя формулировка теории суперструн. Он поставил перед собой задачу найти истоки теории суперструн, что, возможно, приблизит нас к объяснению момента сотворения. Ключевая особенность этой теории, фактор, придающей ей эффективность и уникальность, — необычная геометрия: струны способны самосогласованно колебаться только в 10 и 26 измерениях.

 

Что такое частица?

 

Суть теории струн в том, что она может объяснить природу и материи, и пространства-времени, т. е. природу и «дерева», и «мрамора». Теория струн дает ответы на ряд головоломных вопросов о частицах: например, почему в природе их так много. Чем глубже мы проникаем в мир субатомных частиц, тем больше частиц находим. В нынешнем субатомном «зоопарке» насчитывается несколько сотен частиц, описание их свойств занимает целые тома. Даже Стандартная модель дала нам ошеломляющее количество «элементарных частиц». Теория струн отвечает на этот вопрос, так как струна, которая в 100 квинтиллионов раз меньше протона, совершает колебания, а каждый тип колебаний порождает определенный резонанс или частицу. Струна настолько мала, что резонанс струны и частица почти неразличимы. Только если каким-нибудь способом увеличить частицу, можно увидеть, что это вовсе не точка, а тип колебания струны.

В этой картине каждая субатомная частица соответствует определенному резонансу, возникающему при конкретной частоте. Понятие резонанса знакомо нам в повседневной жизни. Для примера вспомним пение под душем. Даже если от природы нам достался слабый, глуховатый, дрожащий голос, все мы знаем, как легко почувствовать себя звездой оперной сцены в уединенной обстановке душевой кабинки. Это происходит потому, что волны звуков, которые мы издаем, быстро наталкиваются на стены кабинки и отражаются от них. Колебания, без труда вписывающиеся в пространство между стенами, многократно усиливаются и дают резонирующие звуки. Определенные колебания вызывают резонанс, а остальные, волны которых имеют неподходящий размер, гасятся.

Или же представим себе скрипичную струну, способную вибрировать с разными частотами, издавая звуки, соответствующие нотам ля, си и до. Струна издает вибрации, которые гаснут по мере приближения к ее концам (так как струна закреплена с обоих концов), и совершают целое число колебаний между ними. В принципе струна может вибрировать с любой частотой из бесконечного множества. Нам известно, что ноты сами по себе — не принципиальны. Нота ля не более существенна, чем нота си. Главное — это сама струна. Незачем изучать каждую ноту отдельно от остальных. Зная, как вибрирует струна скрипки, мы сразу понимаем свойства бесконечного множества музыкальных нот.

Так и частицы Вселенной сами по себе не фундаментальны. Электрон не более фундаментален, чем нейтрино. Они кажутся фундаментальными только потому, что нашим микроскопам недостает мощности для выявления структуры этих частиц. Согласно теории струн, если мы каким-то образом увеличим точечную частицу, то увидим маленькую вибрирующую струну. В сущности, эта теория гласит, что материя — не что иное, как гармонии, созданные колеблющейся струной. Поскольку количество гармоний, которые можно составить для скрипки, бесконечно, из вибрирующих струн образуется бесконечное множество форм материи. Этим объясняется обилие частиц в природе. Законы физики можно сравнить с законами гармонии применительно к струне. А саму вселенную, состоящую из бесчисленного множества колеблющихся струн, уподобить симфонии.

Теория струн может объяснить природу не только частиц, но и пространства-времени. Перемещаясь в пространстве-времени, струна совершает сложную последовательность движений. Струна может распасться на более мелкие струны или столкнуться с другими и образовать длинную струну. Ключевой момент в том, что все квантовые поправки или петлевые схемы конечны и поддаются вычислениям. Это первая квантовая теория гравитации в истории физики, дающая конечные квантовые поправки. (Как мы помним, все предшествующие теории, в том числе изначальная теория Эйнштейна, концепция Калуцы-Клейна и теория супергравитации, не удовлетворяли этому основному критерию.)

Для того чтобы осуществлять сложные перемещения, струна должна подчиняться целому ряду условий самосогласованности. Условия самосогласованности настолько жестки, что налагают чрезвычайно строгие ограничения на пространство-время. Другими словами, струна не в состоянии самосогласованно перемещаться в любом произвольном пространстве-времени, подобно точечной частице.

Когда ограничения, которые струна налагает на пространство-время, были впервые определены, потрясенные физики увидели, как из уравнений струнной теории возникли уравнения Эйнштейна. Это было поразительно: физики обнаружили, как без каких-либо допущений, связанных с уравнениями Эйнштейна, эти же самые уравнения, как по волшебству, появляются из теории струн. Оказалось, что и уравнения Эйнштейна нельзя считать фундаментальными, если их можно вывести из теории струн.

Если теория струн верна, значит, она дает ответ на давнюю загадку о природе «дерева» и «мрамора». Эйнштейн полагал, что когда-нибудь один только «мрамор» объяснит все свойства «дерева». Для Эйнштейна «дерево» оставалось всего лишь изъяном или вибрацией пространства-времени — не больше и не меньше. Однако специалисты в области квантовой физики придерживались прямо противоположного мнения. Они считали, что «мрамор» можно превратить в «дерево», т. е. метрический тензор Эйнштейна можно преобразовать в гравитон, дискретную порцию энергии, переносящей силу гравитации. Эти точки зрения диаметрально противоположны, долгое время компромисс между ними считался недостижимым. А оказалось, что струнная теория и есть то самое «недостающее звено» между «деревом» и «мрамором».

Теория струн может определять частицы материи как резонансные колебания струны. Кроме того, из теории струн можно вывести уравнения Эйнштейна при условии самосогласованного движения струны в пространстве-времени. Таким образом, мы располагаем всеобъемлющей теорией и материи-энергии, и пространства-времени.

Ограничения самосогласованности на удивление строги. К примеру, они запрещают струне перемещаться в трех или четырех измерениях. Далее мы убедимся, что условия самосогласованности вынуждают струну перемещаться в конкретном количестве измерений. По сути дела, единственные «магические числа», которые допускает теория струн, — 10 и 26 измерений. К счастью, теории струн, определенной для этих измерений, хватает для объединения всех основных взаимодействий.

Следовательно, теории струн достаточно для объяснения всех фундаментальных законов природы. Начав с простой теории вибрирующей струны, можно вывести теорию Эйнштейна, теории Калуцы-Клейна и супергравитации, Стандартную модель и даже теорию Великого объединения. Возможность заново вывести все достижения физики последних двух тысячелетий из чисто геометрических доводов теории струн кажется настоящим чудом. Все теории, до сих пор рассматривавшиеся в этой книге, автоматически включены в теорию струн.

Нынешний интерес к теории струн начался с работы Джона Шварца из Калифорнийского технологического института и его соавтора Майкла Грина из лондонского Колледжа королевы Марии. Прежде считалось, что у концепции струн есть недостатки, препятствующие разработке полноценной самосогласованной теории. Но в 1984 г. эти два физика доказали, что струна отвечает всем условиям самосогласованности. В итоге молодые ученые наперегонки бросились решать задачи, связанные с этой теорией, в надежде заслужить признание. К концу 1980-х гг. в кругу физиков началась настоящая «золотая лихорадка». (Конкуренция между сотнями самых талантливых физиков-теоретиков мира, которые занимаются этими вопросами, резко обострилась. Недавно на обложку журнала Discovery был помещен портрет специалиста в области теории струн Димитриса Нанопулоса из Техаса. Ученый открыто заявлял о своих притязаниях на Нобелевскую премию по физике. Редко подобные страсти вспыхивают из-за абстрактной теории.)

 

Почему именно струны?

 

Однажды мы с одним нобелевским лауреатом в области физики обедали в китайском ресторане Нью-Йорка. За кисло-сладкой свининой в разговоре всплыла тема теории суперструн. Внезапно мой собеседник пустился в пространные рассуждения о том, почему теория суперструн — ошибочный путь. Это погоня за химерами, утверждал он. В истории физики никогда не было ничего подобного, идея чересчур сумасбродна, на его взгляд. Она слишком чужда и ортогональна всем предшествующим тенденциям в науке. Длительный спор свелся к единственному вопросу: почему именно струны? Почему не вибрирующие твердые тела или сгустки?

Мой собеседник напомнил, что в мире физики вновь и вновь используются одни и те же концепции. Природа, подобно произведениям Баха или Бетховена, часто начинает с основной темы, а затем на протяжении всей симфонии повторяет ее бесчисленные вариации. Согласно этому критерию теория струн не является основополагающей для природы.

К примеру, концепция орбит дает о себе знать в природе постоянно и в разных формах: со времен появления трудов Коперника орбиты служат лейтмотивом, который постоянно встречается в природе в различных вариантах — от самой большой галактики до атома и мельчайшей субатомной частицы. Аналогично излюбленная тема в природе — поля Фарадея. Поля пригодны для описания магнетизма галактики и гравитации, а также для электромагнитной теории Максвелла, метрической теории Римана и Эйнштейна, полей Янга-Миллса, входящих в Стандартную модель. По сути дела, теория поля Развилась как универсальный язык субатомной физики, а может, и всей Вселенной. Это самое мощное оружие в арсенале теоретической физики. Все известные формы материи и энергии выражены в показателях теории поля. Закономерности повторяются постоянно, как тема и ее вариации в симфонии.

А струны? Струны вовсе не выглядят структурой, которой природа отдает предпочтение в соответствии с высшим замыслом. Мы не видим струн в космосе. Как объяснил мой коллега, струн мы вообще нигде не видим.

Но, если задуматься, станет ясно, что природа отвела струнам особую роль, как основному строительному материалу для других форм. К примеру, характерная особенность жизни на Земле — струновидная молекула ДНК, содержащая сложную информацию и код самой жизни. Когда возникает вопрос о строительстве всего живого, а также материи на субатомном уровне, струны выглядят идеальным ответом. И в том и в другом случае нам требуется уложить большой объем информации в сравнительно простую и воспроизводимую структуру. Отличительная особенность струны в том, что это одно из самых компактных хранилищ для больших объемов информации, предназначенной для воспроизведения.

Для живых существ природа предназначила двойные цепочки молекулы ДНК, которые могут раскручиваться и образовывать дубликаты друг друга. Кроме того, у нас в организме содержатся миллиарды миллиардов белковых цепочек, образованных аминокислотами как строительным материалом. В каком-то смысле наши тела можно рассматривать как богатейшие коллекции цепочек — молекул протеина, окружающих наши кости.

 

«Струнный квартет»

 

В настоящее время самой удачной версией теории струн считается концепция четырех физиков из Принстона — Дэвида Гросса, Эмиля Мартинеса, Джеффри Харви и Райана Рома, которых иногда называют «принстонский струнный квартет». Самый старший из них Дэвид Гросс. Вопросы, которые Виттен задает на семинарах в Принстоне тихим голосом, можно и не услышать, зато громкий, гулкий и требовательный голос Гросса слышен отчетливо. Всякий, кто проводит семинары в Принстоне, как огня боится острых вопросов, которыми сыплет Гросс. Примечательно, что обычно все они попадают в цель. Гросс и его соавторы предложили так называемую гетеротическую струну. Сегодня из всех вариантов теории Калуцы-Клейна, предложенных в прошлом, именно она с наибольшей вероятностью способна объединить все законы природы в одну теорию.

Гросс убежден, что теория струн решает задачу превращения «дерева» в «мрамор»: «Создание материи из геометрии — в каком-то смысле именно этим и занимается струнная теория. Ее можно воспринимать как таковую, особенно гетеротическую струну — по сути дела, теорию гравитации, в которой частицы материи, а также взаимодействия природы возникают так же, как гравитация возникает из геометрии»[76].

Как мы уже подчеркнули, наиболее примечательная особенность теории струн состоит в том, что в нее автоматически входит теория гравитации Эйнштейна. В сущности, гравитон (квант гравитации) возникает как наименьшая вибрация замкнутой струны. Если теории Великого объединения упорно избегают любых упоминаний о теории гравитации Эйнштейна, то теория суперструн требует включения этой эйнштейновской теории. К примеру, если мы откажемся рассматривать теорию гравитации Эйнштейна как своего рода вибрацию струны, тогда эта теория станет непоследовательной и бесполезной. Именно по этой причине Виттен заинтересовался теорией струн. В 1982 г. он прочел обзорную статью Джона Шварца и был поражен, когда понял, что гравитация вытекает из теории суперструн уже в силу требования самосогласованности. Он вспоминал, что за всю жизнь не испытывал «более сильного интеллектуального трепета». Виттен говорит: «теория струн на редкость притягательна, так как мы вынуждены иметь дело с гравитацией. Во все известные и последовательные теории струн входит гравитация, так что если в квантовой теории поля в том виде, в каком она нам сейчас известна, гравитация невозможна, в теории струн она обязательна»[77].

Гроссу хочется верить, что, если бы Эйнштейн был жив, он оценил бы теорию суперструн. Ему понравилось бы, что красота и простота теории суперструн в конечном итоге исходят из геометрического принципа, точная природа которого до сих пор неизвестна. Гросс утверждает: «Эйнштейн был бы доволен по меньшей мере целью, если не ее реализацией… Ему понравилось бы, что в основе лежит геометрический принцип, которого, к сожалению, мы не понимаем»[78].

Виттен даже рискует заявлять, что «все по-настоящему великие идеи в физике» — «побочные продукты» теории суперструн. Он имеет в виду, что в теорию суперструн укладываются все крупные достижения теоретической физики. И даже утверждает, что открытие Эйнштейном общей теории относительности раньше теории суперструн — «просто случайное событие в развитии планеты Земля». По мнению Виттена, где-то в космосе «другие цивилизации Вселенной» вполне могли открыть теорию суперструн первой, а из нее вывести общую теорию относительности[79].

 



2015-11-20 714 Обсуждений (0)
Упадок теории супергравитации 0.00 из 5.00 0 оценок









Обсуждение в статье: Упадок теории супергравитации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (714)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)