Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами
Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила названиевечного двигателя (perpetuum mobile) первого рода. Многочисленные попытки создать такую машину неизменно заканчивались провалом. Любая машина может совершать положительную работу A над внешними телами только за счет получения некоторого количества теплоты Q от окружающих тел или уменьшения ΔU своей внутренней энергии. Применим первый закон термодинамики к изопроцессам в газах. 1. Визохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно,
2. Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0). 3. В изобарном процессе (p = const) работа, совершаемая газом, выражается соотношением
4. Первый закон термодинамики для изобарного процесса дает:
5. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0. 6. В изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0. Первый закон термодинамики для изотермического процесса выражается соотношением
№9 Изохорный процесс (V = const,следовательно A = 0). Изобарный процесс (p = const). Адиабатный процесс - процесс, протекающий без теплообмена с окружающей средой (Q = 0). Полезные формулы: Изменение внутренней энергии
Работа газа при изобарном процессе (p = const) Адиабатический В адиабатическом процессе теплообмена с окружающей средой не происходит, то есть . Однако, объём, давление и температура меняются, то есть . Следовательно, теплоемкость идеального газа в адиабатическом процессе равна нулю: . [править]Изотермический В изотермическом процессе постоянна температура, то есть . При изменении объема газу передается (или отбирается) некоторое количество тепла. Следовательно, теплоемкость идеального газа стремится к бесконечности: [править]Изохорный В изохорическом процессе постоянен объем, то есть . Элементарная работа газа равна произведению изменения объема на давление, при котором происходит изменение ( ). Первое Начало Термодинамики для изохорического процесса имеет вид: А для идеального газа Таким образом, где — число степеней свободы частиц газа. [править]Изобарный В изобарном процессе ( ): CP=δQ/νΔT=CV+R=((i+2)/2)*R №12 где — изменение внутренней энергии тела, — работа, совершаемая системой. Изменения энтропии S системы в обратимом адиабатическом процессе вследствие передачи тепла через границы системы не происходит[8]: Здесь — температура системы, — теплота, полученная системой. Благодаря этому адиабатический процесс может быть составной частью обратимого цикла[8]. [править]Работа газа Совершение над газом работы на элементарном участке dh. Совершаемая работа показана красными лампочками Поясним понятие работы применительно к адиабатическому процессу. В частном случае, когда работа совершается через изменение объёма, можно определить её следующим способом: пусть газ заключён в цилиндрический сосуд, плотно закрытый легко скользящим поршнем, если газ будет расширяться, то он будет перемещать поршень и при перемещении на отрезок совершать работу[9][10] где F — сила, с которой газ действует на поршень. Перепишем уравнение: где s — площадь поршня. Тогда работа будет равна[9][10] где — давление газа, — малое приращение объёма. Аналогично видно, что уравнение выполняется и для сосудов с произвольной поперечной формой сечения. Данное уравнение справедливо и при расширении на произвольных объёмах. Для этого достаточно разбить поверхность расширения на элементарные участки на которых расширение одинаково[9]. Основное уравнение термодинамики примет вид[11]:
Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает
Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона. Это уравнение имеет вид: где — оператор Лапласа или лапласиан, а — вещественная или комплексная функция на некотором многообразии. В трёхмерной декартовой системе координат уравнение принимает форму: В декартовой системе координат оператор Лапласа записывается в форме и уравнение Пуассона принимает вид: Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа — частный случай уравнения Пуассона): Уравнение Пуассона может быть решено с использованием функции Грина; см., например, статью экранированное уравнение Пуассона. Есть различные методы для получения численных решений. Например, используется итерационный алгоритм — «релаксационный метод»
№13 Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно . Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику . Отсюда коэффициент полезного действия тепловой машины Карно равен . Из последнего выражения видно, что КПД тепловой машины Карно зависит только от температур нагревателя и холодильника. Кроме того, из него следует, что КПД может составлять 100 % только в том случае, если температура холодильника равнаабсолютному нулю. Это невозможно, но не из-за недостижимости абсолютного нуля (этот вопрос решается только третьим началом термодинамики, учитывать которое здесь нет необходимости), а из-за того, что такой цикл или нельзя замкнуть, или он вырождается в совокупность двух совпадающих адиабат и изотерм. Поэтому максимальный КПД любой тепловой машины будет меньше или равен КПД тепловой машины Карно, работающей при тех же температурах нагревателя и холодильника. Например, КПД идеального цикла Стирлинга равен КПД цикла Карно. №15
Популярное: Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2099)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |