Оценка достоверности результатов исследования
Величина того или иного признака неодинакова у всех членов совокупности, несмотря на ее относительную однородность. Например, в группе людей, однородной по возрасту, полу и месту жительства, рост и вес каждого человека отличается от роста и веса других людей. В этом проявляется разнообразие, колеблемость признака в изучаемой совокупности, а значит и средняя арифметическая величина находится в зависимости от колеблемости вариационного ряда. Чем меньше колеблемость ряда, то есть чем меньше амплитуда колебания ряда (разность между самой большой и самой малой вариантой), тем более точно его будет характеризовать средняя арифметическая. Наиболее полную характеристику разнообразию признака в совокупности, степень варьирования вариационного ряда, дает так называемое среднее квадратическое отклонение, обозначаемое греческой буквой «сигма» - d. Существует два способа расчёта среднего квадратического отклонения: среднеарифметический и способ моментов. При среднеарифметическом способе расчёта применяется формула: , где d – истинное отклонение варианты от истинной средней (v-M). Эта формула используется при небольшом числе наблюдений (n £ 30; р=1). При достаточно большом числе наблюдений (n>30; р>1) определяется средневзвешенное квадратическое отклонение по формуле: , где åd2p – сумма произведения квадрата отклонения на частоту каждой варианты.
По способу моментов расчет среднего квадратического отклонения производится по формуле: , где а – условное отклонение варианты от условной средней (а=v-А); - момент второй степени (при n>30); - момент первой степени, возведенный в квадрат. При числе наблюдений, равном 30 и менее, в момент второй степени n заменяется на (n-1). Описанные способы расчета среднего квадратического отклонения требуют значительной вычислительной работы. Поэтому можно использовать приближенный способ вычисления среднего квадратичного отклонения по амплитуде вариационного ряда, с использованием формулы: , где А – коэффициент для определения d, соответствующий числу наблюдений (табл.15). Таблица 15 Определение среднего квадратического отклонения по амплитуде
Помимо среднего квадратического отклонения (d), существует еще один критерий, характеризующий уровень разнообразия величин признака в совокупности, – коэффициент вариации (Cv), который является относительной мерой разнообразия, так как исчисляется как процентное отношение d к средней арифметической величине (М) и высчитывается по формуле:
Для ориентировочной оценки степени разнообразия признака в практике пользуются следующими градациями коэффициента вариации: если коэффициент составляет более 20%, то говорят о сильном разнообразии; при 20-10%-среднее разнообразие; если же коэффициент менее 10%- то считается, что разнообразие слабое. Коэффициент вариации применяют при сравнении степени разнообразия признаков, имеющих различия в величине признаков или неодинаковую их размерность. Например, если необходимо сравнить степень разнообразия массы тела у новорожденных и 7-летних детей. Ясно, что у новорожденных d всегда будет меньше, чем у 7-летних детей, так как их индивидуальная масса меньше (табл. 16). Таблица 16
Как видно из таблицы 16, в этом случае для определения различия в степени разнообразия необходимо ориентироваться не на среднее квадратическое отклонение (d), а на относительную меру разнообразия – коэффициент вариации (Сn). Кроме того, коэффициент вариации имеет большое значение для оценки и сопоставления степени разнообразия нескольких признаков с разной размерностью. Например, из данных таблицы 17 видно, что по среднему квадратическому отклонению нельзя судить о различии в степени разнообразия указанных признаков. Таблица 17 Сравнение различных признаков совокупности по M,d и Сn.
Только Сn позволяет сделать вывод, что наиболее разнообразным признаком в данном примере является СОЭ и менее разнообразным - общий белок крови. Среднее квадратическое отклонение связано со структурой ряда распределения признака. Теорией статистики доказано, что при нормальном распределении в пределах М±d находится 68% всех случаев, в пределах М±2d - 95,5% всех случаев и в пределах М±3d - 99,7% всех случаев, составляющих совокупность, т.е. охватывает почти весь вариационный ряд (рис.2) Рис.2 Теоретическая кривая распределения вариант в однородном вариационном ряду по сигмальным отклонениям (кривая Гаусса). Это теоретическое положение статистики о закономерностях структуры ряда имеет огромное значение для практического применения среднего квадратического отклонения, особенно при разработке проблемы нормы и патологии. Так, в медицине (в здравоохранении) интервал М±d обычно принимается за пределы нормы. Если при исследовании выясняется, что индивидуальные измерения находятся в пределах 95,5% всех наблюдений, т.е. стандартное отклонение от средней (М) составляет ±2d, то можно говорить о принадлежности исследуемого признака к фактору риска. В этом случае врач должен взять исследуемого пациента под диспансерное наблюдение, а в случае, когда стандартное отклонение от средней (М) составляет ±3d врач должен направить исследуемого на консультацию к специалисту по выявленному признаку у данного индивидуума. Таким образом, среднее квадратическое отклонение является стандартным отклонением, позволяющим предвидеть вероятность появления первых признаков формирования патологии у пациента. Кроме того, по среднему квадратическому отклонению можно определить коэффициент вариации при сравнении степени разнообразия разных признаков в одной совокупности или однородных признаков в разных совокупностях; определить структуру вариационного ряда; судить о типичности средней арифметической; оценить отдельные признаки у каждого индивидуума по стандартному отклонению t; определить ошибку средней арифметической величины mM (ошибки репрезентативности).
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1123)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |