Мегаобучалка Главная | О нас | Обратная связь


Формализм и теоретико-множественные основания математики 6 страница



2015-11-23 547 Обсуждений (0)
Формализм и теоретико-множественные основания математики 6 страница 0.00 из 5.00 0 оценок




Чистые математики нередко ссылаются также на работы Римана, который обобщил известную в его время неевклидову геометрию и указал на существование целого семейства неевклидовых геометрий, получивших впоследствии название римановых геометрий (или геометрий римановых пространств ). И в этом случае чистые математики полагают, будто Риман создал свои геометрии лишь с той целью, чтобы «посмотреть, что можно сделать». Думающие так глубоко заблуждаются. Как мы уже говорили, усилия математиков, направленные на устранение малейших сомнений в адекватности евклидовой геометрии окружающему нас миру, увенчались созданием неевклидовой геометрии, оказавшейся столь же пригодной для описания свойств физического пространства, как и евклидова геометрия. Существование двух различных геометрий заставило математиков задуматься над вопросом о том, что, собственно, нам достоверно известно о физическом пространстве? Этот вопрос послужил для Римана отправным пунктом для размышлений. Отвечая на него, Риман в своей лекции [106] 1854 г., которая была опубликована лишь после его смерти, развил общую теорию, включающую классическую геометрию Евклида и неевклидову геометрию Лобачевского — Бойаи в качестве частных случаев. Вследствие ограниченности наших физических знаний римановы геометрии могли оказаться столь же полезными для описания физического пространства, как и евклидова геометрия. Риман предвидел, что пространство и материю нужно рассматривать в неразрывной связи.[159]Следует ли удивляться после этого, что Эйнштейн счел риманову геометрию полезной? Предвидение Римана относительно физичности предложенной им геометрии отнюдь не умаляет остроумного применения, которое нашел римановой геометрии Эйнштейн. Применимость римановой геометрии явилась следствием работы над решением наиболее фундаментальной из физических проблем, которыми когда-либо занимались математики, — выяснением природы физического пространства.

Нельзя не упомянуть еще об одном примере. Одно из интенсивно развивающихся направлений современной математики — теория групп. По мнению чистых математиков, теория групп также была создана «из любви к искусству». Понятие группы ввел в математику Эварист Галуа (1811-1832), хотя неявно оно встречалось в работах Лагранжа, норвежца Абеля и итальянца Паоло Руффини (1765-1822). Внимание Галуа привлекла по существу самая простая и практически важная задача всей математики — разрешимость простых алгебраических уравнений, таких, как квадратное уравнение

 

3x 2 + 5x + 7 = 0,

 

кубическое уравнение

 

4x 3 + 6x2 − 5x + 9 = 0

 

и уравнения более высоких степеней. Уравнения такого типа встречаются в тысячах физических задач. К тому времени, когда эта задача привлекла внимание Галуа, математики научились решать в радикалах общие алгебраические уравнения от первой до четвертой степени (т.е. выражать корни таких уравнений через их коэффициенты с помощью конечного числа алгебраических операций), а Нильс Хенрик Абель (1802-1829) доказал неразрешимость в радикалах общего алгебраического уравнения пятой степени

 

ax 5 + bx 4 + cx 3 + dx 2 + ex + f = 0,

 

где a, b, c, d, e и f — любые вещественные (или комплексные) числа, а также и уравнений более высоких степеней. Галуа задался целью выяснить, почему общие уравнения пятой и выше степени неразрешимы в радикалах и почему частные уравнения сколь угодно высокой степени могут оказаться разрешимыми. Решая эту задачу, Галуа создал теорию групп. Нужно ли удивляться, что понятие, возникшее из решения столь фундаментальной проблемы, как решение алгебраических уравнений, оказалось применимым ко многим другим математическим и физическим задачам? Можно с уверенностью сказать, что теория групп не была «придумана», а родилась на прочной и вполне реальной физико-математической основе.

Кроме того, теория групп была вызвана к жизни не только работами Галуа. Возможно, от внимания чистых математиков ускользнула работа французского кристаллографа Огюста Браве (1811-1863) по структуре кристаллов типа кварца, алмаза и горного хрусталя. Эти вещества состоят из различных атомов, расположенных по определенной схеме, многократно повторяющейся в объеме кристалла. Атомы в кристаллах таких веществ, как поваренная соль и обычные минералы, расположены особым образом. В простейшем случае (поваренной соли) можно считать, что соседние атомы расположены в вершинах куба. С 1848 г. Браве занялся изучением преобразований (поворотов кристалла вокруг какой-либо оси), трансляций (параллельных переносов, или сдвигов) или отражений, переводящих кристалл в себя. Такие преобразования образуют различные группы. Камил Жордан (1833-1922), обративший внимание на работу Браве, дополнил и обобщил ее в своей работе 1868 г. и в своем труде «Трактат о подстановках» (Traité des substitutiones, 1870), сыгравшем существенную роль в распространении понятия группы в среде математиков, использовал заимствованные из кристаллографии соображения наряду с другими аргументами, подтверждающими важность изучения теории групп.

Работа Браве навела Жордана на мысль об изучении бесконечныхгрупп — групп вращений и параллельных переносов. Бесконечные (непрерывные) группы обрели известность после знаменитой лекции [107] Феликса Клейна, прочитанной в Эрлангенском университете в 1872 г. и тогда же опубликованной, где он предложил различать все известные в то время геометрии по допускаемым ими группами «движений» и по инвариантам этих «движений». Так, евклидова геометрия занимается изучением тех свойств фигур, которые остаются инвариантными при поворотах, параллельных переносах и преобразованиях подобия (см., например, [108]). Занимавшую в 1872 г. умы математиков проблему, чем отличаются известные и столь непохожие друг на друга геометрии и какая из них соответствует физическому пространству, вряд ли можно отнести к чистой математике. Немало работ по применению дискретных и непрерывных групп к классификации методов решений дифференциальных уравнений[160]вошло в математику, прежде чем в 90-х годах XIX в. было сформулировано современное понятие группы.[161]

К аналогичному выводу приводит изучение и всех других понятий и теорий, якобы являющихся продуктом чистой математики: матриц тензорного исчисления, топологии. Например, вся современная алгебра обязана своим происхождением кватернионам Гамильтона (гл. IV). Мотивы создания абстрактной алгебры прямо или косвенно были связаны с физическими соображениями, и ее творцы неусыпно заботились о приложениях, которые могут иметь вводимые ими понятия. Следовательно, история неоспоримо свидетельствует, что любая математическая дисциплина, намеренно создаваемая как область чистой математики и лишь впоследствии нашедшая различные применения, как правило, возникала при исследовании реальных физических проблем или проблем, имеющих непосредственное отношение к изучению природы. Часто случается, что «хорошая математика», создание которой первоначально было стимулирование потребностями физики, находит новые приложения, которых не предвидели творцы теории. Так математика возвращает свой долг естествознанию. Новых, непредвиденных приложений следует ожидать заранее. Не удивляемся же мы, что молотком, который был изобретен для того, чтобы крушить горные породы, можно также и забивать гвозди. Неожиданные естественнонаучные приложения математики возникают по той простой причине, что математические теории с самого начала имеют физическую подоплеку а отнюдь не обязаны своим происхождением пророческому прозрению всеведущих математиков, сражающихся разве лишь с собственным духом. Неизменный успех абстрактных математических теорий отнюдь не случаен.

Рассказывают, что один из выдающихся английских математиков — Годфри Гарольд Харди (1877-1947) — однажды провозгласил тост: «За чистую математику! Да не найдет она никаких приложений!».[162]Леонард Юджин Диксон (1874-1954), пользовавшийся непререкаемым авторитетом в Чикагском университете, говаривал: «Слава богу, теория чисел не запятнана никакими приложениями».

В статье о математике, написанной во время второй мировой войны (1940), Харди утверждал:

 

Считаю своим долгом заявить с самого начала, что под математикой я понимаю настоящую математику, математику Ферма и Эйлера, Гаусса и Абеля, а не то, что выдают за математику в инженерной лаборатории. Я имею в виду не только «чистую» математику (хотя именно она интересует меня в первую очередь) — Максвелла и Эйнштейна, Эддингтона и Дирака я также причисляю к «чистым» математикам.

 

Прочитав эти строки, повторенные в книге Xарди «Апология математика», можно было бы подумать, что он, по крайней мере частично, приемлет прикладную математику. Но далее у Харди говорится следующее:

 

В понятие чистой математики я включаю всю совокупность математических знаний, обладающих непреходящей эстетической ценностью, какой обладает, например, греческая математика, которая вечна потому, что лучшая ее часть, подобно лучшим произведениям литературы, и через тысячи лет продолжает приносить тысячам людей эмоциональное удовлетворение.

 

Харди и Диксон могут покоиться с миром, ибо история подтвердила правильность их высказываний. Их чистая математика, как и всякая математика, созданная ради самой себя, почти заведомо не найдет никаких приложений.[163]Тем не менее полностью исключить всякую применимость чистой математики «по Харди и Диксону» мы не можем. Ребенок, наугад наносящий мазки краски на холст, может создать шедевр, соперничающий с картинами Микеланджело (скорее с произведениями современного искусства!), а обезьяна, нажимающая как попало клавиши пишущей машинки, может, как заметил Артур Эддингтон, создать пьесу, сравнимую по своим художественным достоинствам с пьесами Шекспира. Когда работают тысячи чистых математиков, вряд ли можно поручиться, что хотя бы один из полученных результатов случайно не окажется полезным для каких-либо приложений. Тот, кто ищет на улице золотые монеты, может найти мелкие медные монетки. Но интеллектуальные усилия, не соотнесенные с реальностью, почти заведомо оказываются бесплодными. Как заметил Джордж Биркгоф, «по-видимому, новые математические открытия, совершаемые по подсказке физики, всегда будут наиболее важными, ибо природа проложила путь и установила каноны, которым должна следовать математика, являющаяся языком природы». Но природа не сообщает свои секреты громогласно, а шепчет еле слышно — и математик должен чутко прислушиваться, усиливать слабый голос природы и доносить услышанное до всеобщего сведения.

Несмотря на убедительные свидетельства истории, некоторые математики продолжают утверждать, что чистая математика в будущем непременно найдет приложения и что независимость математики от естественных наук якобы расширяет ее перспективы. Этот тезис недавно (1961) был повторен профессором Гарвардского, Йельского и Чикагского университетов Маршаллом Стоуном. В статье «Революция в математике» Стоун, воздав должное значению математики для естественных наук, далее говорит;

 

Хотя в нашей концепции математики и в наших взглядах на нее по сравнению с началом XX в. произошло несколько важных изменений, лишь одно из них вызвало подлинный переворот в наших представлениях о математике — открытие полной независимости математики от физического мира… Математика, как мы сейчас понимаем, не имеет ни одной обязательной связи с физическим миром, помимо той смутной и несколько загадочной, что неявно содержится в утверждении о том, что процесс мышления происходит в мозгу. Без преувеличения можно сказать, что открытие независимости математики от внешнего мира знаменует собой одно из самых значительных интеллектуальных достижений в истории математики…

Сравнивая современную математику с той, какой она была в конце XIX в., нельзя не удивляться, как быстро выросла наша математика и количественно, и качественно. Вместе с тем нельзя не отметить, как быстро она развивалась, как все больше места в ней отводилось абстракции и все больше внимания уделялось введению и анализу емких математических структур. Как показывает более внимательное рассмотрение, именно новая ориентация математики, ставшая возможной лишь благодаря ее отходу от приложений, и была подлинным источником необычайной жизнеспособности и роста математики за последнее столетие…

Современный математик предпочитает определять предмет своей науки как изучение общих абстрактных схем, каждая из которых представляет собой здание, построенное из вполне определенных абстрактных элементов, скрепленных произвольными, но однозначно определенными соотношениями… По мнению математика, ни сами системы, ни предоставляемые логикой средства для изучения их структурных свойств не имеют прямой или необходимой связи с физическим миром… Лишь в той степени, в какой математика освободилась от уз, связывающих ее в прошлом с теми или иными конкретными аспектами реальности, она может стать гибким и мощным инструментом, столь необходимым для вторжения в области, лежащие за пределами известного. Уже сейчас можно было бы привести многочисленные примеры, подтверждающие сказанное…

 

Далее Стоун приводит в качестве примеров генетику, теорию игр и математическую теорию связи. В действительности же эти примеры вряд ли могут служить подтверждением его тезиса. Все названные им науки возникли в результате применения классической математики, стоявшей на прочном физическом основании.[164]

С резкими возражениями против отстаиваемого Стоуном тезиса выступил в 1962 г. Курант[165]:

 

В статье [Стоуна] утверждается, что мы живем в эпоху великих успехов математики, превосходящих все когда-либо достигнутое в прошлом со времен античности. Причину триумфа «современной математики» автор статьи усматривает в одном фундаментальном принципе: абстракции и сознательном отрыве математики от физического и прочего содержания. По его мнению, математический ум, освобожденный от балласта, может воспарить до высот, откуда можно прекрасно наблюдать и исследовать лежащую глубоко внизу реальность.

Я отнюдь не склонен извращать или приуменьшать высказывания или педагогические выводы знаменитого автора. Но как призывный клич, как попытка указать направление, в котором должны развиваться исследования, и прежде всего образование, статья Стоуна в действительности представляет собой сигнал опасности и зов о помощи. Опасность преисполненного энтузиазмом абстракционизма усугубляется тем, что абстракционизм не отстаивает бессмыслицы, а выдвигает полуистину. Разумеется, совершенно недопустимо, чтобы односторонние полуистины мирно сосуществовали с жизненно важными аспектами сбалансированной полной истины.

Никто не станет отрицать, что абстракция является действенным инструментом математического мышления. Математические идеи нуждаются в непрестанной «доводке», придающей им все более абстрактный характер, в аксиоматизации и кристаллизации. Правда, существенного упрощения в понимании структурных связей и зависимостей удается достичь лишь после выхода на более высокое плато. Верно и то, что, как неоднократно подчеркивалось, основные трудности в математике исчезают, если отказаться от метафизических предрассудков и перестать рассматривать математические понятия как описания некой реальности.

Я отнюдь не отрицаю, что наша наука питается живительными соками, идущими от корней. Эти корни, бесконечно ветвясь, глубоко уходят в то, что можно назвать «реальностью» — будет ли это механика, физика, биологическая форма, экономическая структура, геодезия или (в данном контексте) другая математическая теория, лежащая в рамках известного, Абстракция и обобщение для математики имеют не более важное значение, чем индивидуальность явлений, и прежде всего индуктивная интуиция. Только взаимодействие этих сил и их синтез способны поддерживать в математике жизнь, не давая нашей науке иссохнуть и превратиться в скелет. Мы должны решительно пресекать всякие попытки придать одностороннее направление развитию, сдвинуть его к одному полюсу антиномии бытия.

Нам ни в коем случае не следует принимать старую кощунственную чушь о том, будто математика существует к «вящей славе человеческого разума». Мы не должны допускать раскола и разделения математики на «чистую» и «прикладную». Математика должна сохраниться и еще более укрепиться как единая живая струя в бескрайнем потоке науки. Нельзя допустить, чтобы она превратилась в ручеек, уходящий в сторону от основного потока и теряющийся в песках.

Центробежные силы внутренне присущи математике и все же непрестанно угрожают ее существованию. Фанатики изоляционистского абстракционизма представляют для математики реальную опасность. Но не меньшую опасность представляют консервативные реакционеры, не умеющие проводить различия между пустыми претензиями и подлинным вдохновением.

 

Не отрицая ценности абстракции, Курант утверждал в 1964 г., что математика должна черпать побудительные мотивы из вполне конкретных проблем и должна быть нацелена на некий слой реальности. Если математике необходимо воспарить в абстракцию, то полет в горные выси должен быть не просто бегством от реальности — неоценимое значение имеет возвращение на землю, даже если один и тот же пилот не в состоянии взять на себя управление полетом от начала и до конца.

Математику часто сравнивают с деревом, корни которого прочно и глубоко вросли в плодородную естественную почву. Ствол дерева — число и геометрическая фигура. От ствола отходит множество ветвей, символизирующих различные понятия и разделы математики, которые возникли в ходе ее развития. Одни ветви прочны и питают множество молодых побегов, другие дали несколько чахлых отростков, не увеличивающих особо ни размеры, ни прочность всего дерева. Есть на дереве и засохшие, мертвые ветви. Но самое важное, пожалуй, то, что дерево математики уходит своими корнями в надежную земную твердь, а через ствол и ветви с реальностью связаны и все математические теории. Предпринятые в последнее время попытки полностью удалить почву, оставив в неприкосновенности дерево, корни, ствол и все пышную крону, не могли увенчаться успехом. Многие ветви смогут расцвести лишь после того, как корни еще глубже проникнут в плодородную землю. От черенков, привитых на новые ветви, но не подпитываемых живительными соками реальности, рождались вялые побеги, которым так и не суждено было обрести жизнь. При тщательном уходе таким побегам можно придать видимость живых: они также отходят от ствола и переплетаются с зелеными ветвями, но все же они мертвы, и их можно отсечь, не нанеся ни малейшего ущерба всему живому.

Другие аргументы, казалось бы, подкрепляют утверждение Стоуна о том, что возможность свободно заниматься чистой математикой благоприятно скажется на укреплении всей математики и будет способствовать возникновению новых подходов к прикладной математике. Но тот, кто занимается чистой математикой, сколь бы изощрен ни был его разум и сколь бы громкое имя он ни носил, затрачивает на это значительную часть своих сил и, следовательно, может с меньшей эффективностью применять математические построения к практическим ситуациям. Отдавая свое время и энергию абстрактной математике, он неизбежно проникается ее атмосферой, и у него остается меньше времени для того, чтобы узнать о потребностях прикладной математики и разработать средства, отвечающие ее нуждам. Прикладные математики могут с пользой для себя осведомляться о достижениях чистых математиков, однако чрезмерное внимание к чистой математике приводит к пагубному для судеб математики распылению ресурсов. Невнимание к приложениям чревато изоляцией и, возможно, атрофией всей математики в целом.

Как показала история, Стоун заведомо заблуждался. В своем очерке «Математик» (1947) фон Нейман отметил:

 

Не подлежит сомнению, что определенная часть движущих идей в математике (причем именно в тех ее разделах, к которым как нельзя лучше применимо название «чистая математика») берет свое начало в естественных науках… На мой взгляд, наиболее характерная отличительная черта математики состоит в ее особом отношении к естественным наукам и вообще к любой науке, интерпретирующей факты на уровне более высоком, чем чисто описательный.

([105], с. 88-89.)

 

Выдающийся французский математик Лоран Шварц, не колеблясь, заявил, что наиболее бурно развивающиеся области современной математики — абстрактная алгебра и алгебраическая топология — не имеют приложений.[166]Некоторые работы облекают конкретные темы в терминологию и понятия, характерные для этих областей, но подобный камуфляж не способствует решению прикладных проблем.

Однако сторонники чистой, абстрактной математики не думают сдаваться. Один из ведущих аналистов нашего времени профессор Жан Дьедонне в 1964 г. отверг, как ошибочное, утверждение о том, что если математике предоставить вариться в собственном соку, то она погибнет от истощения:

 

Напоследок я хотел бы подчеркнуть, сколь мало новейшая история оправдывает благочестивые пошлости прорицателей краха, регулярно предупреждающих нас о гибельных последствиях, которые математика неминуемо навлечет на себя, если откажется от применений к другим наукам. Я не собираюсь утверждать, что тесный контакт с иными областями, такими, как теоретическая физика, невыгоден для обеих сторон. Однако совершенно ясно, что из всех поразительных достижений, о которых я рассказывал, ни одно, за возможным исключением теории распределений, ни в малейшей степени не пригодно для физических применений. Даже в теории уравнений с частными производными сейчас упор больше делается на «внутренние» и структурные проблемы, чем на вопросы, имеющие прямое физическое значение. Даже если бы математика насильно была отрезана от всех прочих каналов человеческой деятельности, в ней достало бы на столетия пищи для размышлений над большими проблемами, которые мы должны еще решить в нашей собственной науке.

([115], с. 11.)

 

Хотя Дьедонне отчетливо представлял себе нескончаемую вереницу проблем чистой математики, он — надо отдать ему должное — не обошел молчанием тезис о том, что всякое творение чистой математики в конечном счете находит применение. Приведя внушительный перечень исследований по чистой математике, и в частности по теории чисел, Дьедонне заметил: «Трудно представить, что подобные результаты окажутся применимыми к какой-нибудь физической проблеме». Выступая в защиту чистой математики в целом, Дьедонне вместе с тем не мог не заметить, что хвастливые заявления математиков о ценности чистой математики для естественных наук представляют собой своего рода «мелкое жульничество». По словам Дьедонне, чистые математики не пожалеют сил, чтобы доказать единственность решения какой-нибудь проблемы, но не ударят палец о палец, чтобы попытаться найти это решение. Физик же знает, что решение существует и единственно (Земля не обращается вокруг Солнца по двум различным орбитам), но ему необходимо знать истинную орбиту.

Более реалистических взглядов на значимость той математики, которой следовало бы заниматься, придерживался человек, который по своим заслугам в области чистой математики не уступал Дьедонне, — швед Ларе Гординг. Свои взгляды он изложил в докладе на Международном конгрессе математиков в 1958 г.:

 

Я не могу здесь вдаваться во многие важные части интересующего нас предмета, например в теорию разностных уравнений, теорию систем, приложения к квантовой механике и дифференциальной геометрии. Мой предмет — общая теория дифференциальных операторов с частными производными. Он вырос из классической физики, но не имеет сколько-нибудь существенных применений к ней. Тем не менее физика по-прежнему остается для него основным источником интересных проблем. У меня сложилось убеждение, что общие доклады, подобные тому, с которым я сейчас выступаю, менее полезны, чем периодические обзоры нерешенных физических проблем, требующих новых математических методов. Такие обзоры вряд ли сообщали что-либо новое специалистам, но могли бы указать многим математикам задачи, заслуживающие внимания. Усилия, направленные на более тесное взаимодействие между физикой и математикой, редко планировались заранее. Но именно они должны стать главной заботой международных математических конгрессов.

 

Тех, кто гордится созданием математики, не опороченной связью с физическим миром, а под давлением начинает утверждать, что в один прекрасный день другие найдут применение их ныне бесцельным работам, можно было бы оставить в покое. Но их действия противоречат всему ходу истории. Их уверенность в том, что математика, освобожденная от связей с естественными науками, принесет более весомые, разнообразные и плодотворные результаты, применимые к более широкому кругу явлений, чем старая, традиционная математика, не подкрепляется ничем, кроме их же собственного голословного утверждения.

Сторонники чистой математики могут выдвигать (и действительно выдвигают) и другие аргументы в защиту ценности своей работы, ссылаясь на внутреннюю красоту таких исследований и интеллектуальный вызов, который они бросают ученому. В существовании подобных ценностей вряд ли кто-нибудь сомневается. Но позволительно усомниться в том, что они могут служить достаточным основанием для огромного количества работ по чистой математике. Какого бы мнения мы ни придерживались, ясно одно: эти ценности не вносят никакого вклада в то, что придает математике наибольшую значимость, — в изучение природы. Красота и интеллектуальный вызов — атрибуты математики ради математики. Но эти проблемы, безусловно, заслуживают особого разговора, который выходит далеко за рамки нашего рассказа об изоляции математики.

Защитники и критики чистой математики по вполне понятным причинам находятся в довольно натянутых отношениях друг с другом. Все споры между ними тотчас рождают юмористические или саркастические замечания. Прикладные математики, язвят приверженцы чистой математики, не заботятся о строгих доказательствах — единственно, что их интересует, это соответствие полученных ими результатов физическим явлениям. Типичным представителем прикладной математики был один из основоположников современной «теоретической электротехники» англичанин Оливер Хевисайд (1856-1925). Применяемые им методы решений, с точки зрения чистых математиков, были сомнительны в силу полной своей необоснованности, за что Хевисайда не раз резко критиковали. В свою очередь Хевисайд относился к своим критикам, которых он называл «логическими контролерами», с высокомерным пренебрежением. «Логике нетрудно быть терпеливой, ведь она вечна», — говорил он. Ему доводилось не раз приводить чистых математиков в замешательство. В те времена, когда так называемые расходящиеся ряды считались полностью «незаконными», Хевисайд заявил по поводу одного из таких рядов: «Подумаешь, ряд расходится! Ведь можем же мы что-нибудь с ним сделать!» Впоследствии все «экстравагантные» методы Хевисайда были строго обоснованы и даже породили новые направления математических исследований. Дабы уязвить пуристов, прикладные математики имеют обыкновение утверждать, что чистые математики способны лишь находить трудности в любом решении, тогда как прикладные математики могут разрешить любую трудность. Популярно также высказывание, что чистые математики решают «то, что можно, так как нужно», а прикладные — «то, что нужно, так как можно».

Прикладные математики любят поддразнивать пуристов и по-другому. Математикам, работающим в приложениях, приходится решать те задачи, которые ставит природа, тогда как чистые математики сами придумывают себе задачи. Поэтому прикладные математики и говорят, что чистые математики ведут себя подобно человеку, который ищет потерянный на темной улице ключ под фонарем только потому, что там светлее.

А чтобы еще больше унизить своих извечных противников, прикладные математики рассказывают, и такую историю. У одного человека скопилось грязное белье, и он отправился на поиски прачечной. Увидев вывеску «Прием белья в стирку», он заходит в помещение и кладет узел с бельем на прилавок. Владелец заведения, глядя на посетителя с некоторым удивлением, спрашивает: «Что вам угодно?» «Я хочу отдать белье в стирку», — говорит посетитель. «Но мы не принимаем белье в стирку», — отвечает хозяин заведения. На этот раз удивляется посетитель. «А для чего же эта вывеска в витрине?» — спрашивает он. «Не обращайте на нее внимания, — отвечает хозяин, — мы ее сделали просто так».

Спор между прикладными и чистыми математиками продолжается, а поскольку в современной математике тон задают чистые математики, они могут позволить себе смотреть сверху вниз на своих «заблудших собратьев» и даже выговаривать им. Как заметил профессор Клиффорд Э. Трусделл, "«прикладная математика» — это оскорбление, наносимое теми, кто считает себя «чистыми» математиками, тем, кого они считают нечистыми… но «чистая» математика — самоубийственное отрицание своего происхождения от воспринимаемых человеком ощущений или тайный пароль, позволяющий «чистых» отличать от «нечистых», — не более чем болезнь, изобретенная в прошлом веке…". Она стала самоцелью, и никому из чистых математиков не приходит в голову задуматься над тем, для чего нужна их наука. Само по себе такое положение не слишком завидно. Цель математики — открывать нечто достойное познания. Ныне же одно математическое исследование порождает другое, то в свою очередь порождает третье и т.д. В храме математики никто более не осмеливается спрашивать что-либо о цели и смысле. Математика утратила связь с реальностью. Стены башни из слоновой кости стали настолько толстыми, что находящиеся внутри ее исследователи перестали видеть то, что происходит снаружи. Попавшие в башню умы оказались в изоляции.



2015-11-23 547 Обсуждений (0)
Формализм и теоретико-множественные основания математики 6 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: Формализм и теоретико-множественные основания математики 6 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (547)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.02 сек.)