Критерий согласия Пирсона о виде распределения
До сих пор мы предполагали, что закон распределения генеральной совокупности известен. Если закон распределения неизвестен, но есть основания предполагать, что он имеет определенный вид (назовем его А), то проверяют нулевую гипотезу: генеральная совокупность распределена по закону А. Проверка этой гипотезы производится при помощи специально подобранной случайной величины – критерия согласия. Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Имеется несколько критериев согласия, наиболее часто используемым является критерий согласия К.Пирсона («хи квадрат»). Ограничимся применением критерия Пирсона к проверке гипотезы о нормальном распределении генеральной совокупности. Пусть по выборке объема n получено эмпирическое распределение: Варианты…………………… Эмпирические частоты……. Допустим, что в предположении нормального распределения генеральной совокупности вычислены теоретические частоты В качестве критерия проверки нулевой гипотезы примем случайную величину:
Естественно, чем меньше различаются эмпирические и теоретические частоты, тем меньше величина критерия, и, следовательно, он характеризует близость эмпирического и теоретического распределений. Доказано, что при n®¥ закон распределения случайной величины (А) стремится к закону распределения Число степеней свободы определяется из равенства Построим правостороннюю критическую область, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости
Таким образом, правосторонняя критическая область определяется неравенством Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу H0: генеральная совокупность распределена нормально, необходимо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия Отметим два обстоятельства. Объем выборки должен быть достаточно велик Поскольку возможны ошибки первого и второго рода, следует проявлять осторожность. Например, можно повторить опыт, увеличить число наблюдений, построить предварительно график распределения и т.п.
Пример. При уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности, если известны эмпирические и теоретические частоты:
Рассчитаем
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (436)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |