Мегаобучалка Главная | О нас | Обратная связь


Борьба с прихватами бурильной колонны



2015-11-27 3761 Обсуждений (0)
Борьба с прихватами бурильной колонны 4.75 из 5.00 4 оценки




Основными причинами прихватов бурильной колонны при использовании глинистого раствора в качестве промывочной жидкости являются:

1) промывка забоя глинистым раствором с очень большой водоотдачей; такой раствор образует толстую глинистую корку на стенках скважины, что ведет к сужению диаметра ствола скважины, при подъеме бурильной колонны корка сдирается и над долотом образуется сальник, уплотняющийся при подъеме, что приводит к прихвату;

2) выпучивание пластичных пород (глин) при большой разности давлений в пластах и стволе скважины под влиянием воды, проникающей из глинистого раствора; набухающие и выпучивающиеся породы сужают ствол скважины, вызывая резкое повышение давления на насосах и прихват бурильной колонны в интервале выпучивания;

3) плохая и нерегулярная очистка глинистого раствора от выбуренной породы; в результате этого в скважину закачивается глинистый раствор вместе с ранее выбуренными частицами;

4) оставление бурильной колонны без движения в скважине продолжительное время при качестве раствора, не соответствующем условиям бурения;

5) ступенчатый профиль скважины; при бурении скважины долотами разного диаметра в месте перехода от большого диаметра к меньшему скапливаются обломки выбуренной породы, уплотняющиеся в этом месте, что приводит к сужению ствола и прихвату бурильной колонны;

6) промыв в резьбовых соединениях бурильной колонны; при этом раствор не выносит породы и долото «зарывается» в породу без промывки;

7) недостаточные скорости движения раствора в кольцевом пространстве во время бурения.

Прихват бурильной колонны может также произойти от разницы пластового давления и давления столба промывочной жидкости, когда бурильная колонна, оставленная без движения, лежит на стенке скважины против зоны проницаемых пород. Глинистая корка под давлением лежащих на ней бурильных труб постепенно начинает уплотняться и все меньше передавать через себя гидростатическое давление. Когда же глинистая корка становится непроницаемой, передача давления прекращается. Поскольку пластовое давление имеет меньшее значение, чем давление столба промывочного раствора на данной глубине, то бурильная колонна оказывается под воздействием сил неуравновешенной части давления столба раствора, препятствующих извлечению бурильной колонны из скважины.

Причиной прихвата бурильной колонны в турбинном бурении при использовании воды в качестве промывочной жидкости является недостаточная промывка скважины перед наращиванием или подъемом бурильной колонны.

Для предупреждения прихватов необходимо:

1) применять высококачественные глинистые растворы, дающие тонкие плотные корки на стенках скважин;

2) обеспечивать максимально возможную скорость восходящего потока глинистого раствора; перед подъемом бурильной колонны скважину необходимо промывать до полного удаления выбуренной породы и приведения параметров глинистого раствора в соответствие с указанными в ГТН;

3) обеспечивать полную очистку глинистого раствора от обломков выбуренной породы;

4) регулярно прорабатывать в процессе бурения зоны возможного интенсивного образования толстых корок;

5) утяжеление глинистого раствора производить при вращающейся бурильной колонне;

6) следить в глубоких скважинах за температурой восходящего глинистого раствора, т. к. резкое снижение последней свидетельствует о появлении размыва резьбовых соединений в колонне бурильных труб выше долота;

7) при вынужденных остановках процесса бурения необходимо:

а) через каждые 3–5 мин расхаживать бурильную колонну и проворачивать ее ротором;

б) при отсутствии электроэнергии подключить аварийный дизель-генератор и бурильную колонну периодически расхаживать; при его отсутствии бурильный инструмент разгрузить примерно на вес, соответствующий той части колонны труб, которая находится в необсаженном интервале ствола, и прекратить промывку, периодически возобновляя ее при длительной остановке;

в) в случае выхода из строя пневматической муфты подъемного механизма установить аварийные болты и расхаживать бурильную колонну или поднимать ее;

8) для предотвращения прихвата бурильной колонны при использовании утяжеленного глинистого раствора следует систематически применять профилактические добавки: более 0,8 % графита, I–3 % сульфонола (в виде 1–3 %-ного водного раствора); подбор рецептур в каждом отдельном случае должен уточняться лабораторией глинистых растворов.

В практике бурения применяется ряд методов ликвидации прихватов бурильных и обсадных колонн.

Затяжки и небольшие прихваты обычно ликвидируются путем расхаживания (многократное, чередующееся опускание и поднимание колонны) и проворачивания ротором бурильной колонны. Величина усилия, которое прикладывается к трубам во время расхаживания, может намного превышать собственный вес колонны и лимитируется прочностью труб и талевой системы. Поэтому перед расхаживанием должно быть тщательно проверено состояние вышки, талевой системы, лебедки и их прочность, а также состояние индикатора веса. Если расхаживанием не удается ликвидировать прихват, а циркуляция промывочной жидкости не прекратилась, прибегают к установке нефтяной, водяной или кислотной ванны.

Практика производства нефтяных ванн в скважинах, где бурили с промывкой забоя водой и скважина была заполнена водой, показала, что нефть очень быстро всплывает. В этих случаях, чтобы получить эффект от нефтяной ванны, необходимо перед и после закачки нефти прокачать по несколько кубометров глинистого раствора. Глинистый раствор ограничивает быстроту всплывания нефти, и нефтяная ванна дает результат.

Для освобождения прихваченных бурильных колонн и устранения заклинивания долота, турбобуров в карбонатных, глинистых (известняках, доломитах) и других породах, поддающихся действию кислоты, применяется кислотная ванна. Водяная ванна эффективна, когда замена глинистого раствора нефтью может привести к выбросу, если в зоне прихвата встречены обваливающиеся глины, и особенно когда бурильная колонна прихвачена или заклинена в отложениях магниевых и натриевых солей.

Чтобы успешно провести операцию по установке ванны, необходимо правильно определить расстояние от места прихвата до устья скважины, т. е. глубину прихвата. В промысловой практике глубину прихвата обычно находят по величине удлинения свободной неприхваченной части бурильных труб при расхаживавши бурильной колонны.

Для определения глубины прихвата бурильных, обсадных или насосно-компрессорных труб существуют специальные приборы – прихватоопределители.

Работа прихватоопределителя основана на свойстве ферромагнитных материалов, размагничивающихся при деформации предварительно намагниченных участков. В зону предполагаемого места прихвата спускается прибор для получения характеристики намагниченности прихваченных труб. Производится первый контрольный замер в месте прихвата. Далее в зоне прихвата устанавливаются контрольные магнитные метки путем подачи тока через электромагнит на участки колонны, расположенные друг от друга на расстоянии 10 м. При этом на каждом участке намагничивается отрезок трубы длиной 15–20 см.

Вторым контрольным замером записывается кривая магнитной индукции вдоль всего участка, где установлены магнитные метки. Последние на кривой магнитной индукции выделяются четкими аномалиями. На диаграмме меньшими аномалиями отбиваются также замки и муфты. После этого прихваченную колонну труб расхаживают непродолжительное время, при этом металл неприхваченных труб испытывает деформацию, в результате которой магнитные метки пропадают. В зоне прихвата магнитные метки не исчезают, т. к. этот участок не деформируется.

Третьим контрольным замером определяют участок, где магнитные метки не исчезли, т. е. определяется интервал прихвата.

Если нефтяная (кислотная или водяная) ванна не дала положительных результатов, прибегают к сплошной промывке нефтью или водой. Сплошная промывка водой возможна при бурении в устойчивых породах. При переходе на сплошную промывку нефтью следует избегать резкого перехода от глинистого раствора к нефти, т. к. для подъема тяжелого глинистого раствора в затрубном пространстве и для движения легкой нефти внутри бурильных труб потребуется высокое давление. Циркуляция нефти в скважине имеет ряд отрицательных сторон: нарушает глинизацию стенок скважины, создает опасность нефтяного или газового выброса.

Если, несмотря на принятые меры, бурильную колонну освободить не удается, ее развинчивают по частям при помощи бурильных труб с левой резьбой. При развинчивании прихваченной части приходится вначале расфрезеровывать сальник, образовавшийся вокруг труб. Этот процесс очень длителен и малоэффективен. Поэтому, если для извлечения прихваченной части бурильной колонны требуется много времени, обычно ее оставляют в скважине и обходят стороной. Такое отклонение ствола, называемое «уходом в сторону», производят используя методы бурения наклонных скважин (см. разд. 6.5).

Для ликвидации прихватов бурильной колонны успешно применяется метод развинчивания бурильных труб при помощи взрыва: ударная волна, проходя через резьбовое соединение трубы, вызывает резкое ослабление его. Если перед взрывом к трубам был приложен обратный вращающий момент, а резьбовое соединение было разгружено от веса вышележащих труб, то при взрыве происходит открепление резьбового соединения против места нахождения торпеды, которое затем легко отвинчивают ротором. Этот метод позволяет в большинстве случаев освободить трубы, находящиеся выше места прихвата, не прибегая к использованию бурильных труб с левой резьбой.

6. искривление СКВАЖИН
и НАПРАВЛЕННОе бурение

При бурении скважины проектируются вертикальными или наклонными. Наклонными считаются скважины, отклонение которых от вертикали составляет: более 2º при колонковом бурении и более 6º – при глубоком бурении скважин.

Отклонение скважины от вертикали может вызываться естественными условиями или искусственно.

Естественное искривление обусловливается рядом причин (геологических, технических, технологических), зная которые, можно управлять положением скважины в пространстве.

Под искусственным искривлением скважин понимают любое принудительное их искривление. Наклонные скважины, направление которых в процессе бурения строго контролируется, называют наклонно направленными.

Наклонно направленные скважины подразделяют на одно- и многозабойные. При многозабойном бурении из основного, вертикального или наклонного ствола проходится дополнительно один или несколько стволов.

6.1. Причины естественного искривления
скважин

Влияние геологических условий в основном сводится к тому, что при бурении в породах, различных по физико-механическим свойствам, определяющим их буримость, скорость разрушения пересекаемых пород в отдельных точках забоя различна.

Геологические причины по степени проявления и важности обычно рассматривают в следующем порядке:

1) влияние перемежаемости различных по твердости пород и угла встречи скважины с пластом;

2) влияние анизотропии пород;

3) влияние геологических структур;

4) влияние наличия твердых включений в породе, зон дробления, трещиноватости и т. д.

При пересечении наклонно залегающих, перемежающихся и различных по твердости пластов скважина, как правило, закономерно искривляется при переходе из твердой породы в мягкую и из мягкой породы в твердую – в сторону твердой. Закономерность такого отклонения скважины определяется тем, что при одних и тех же параметрах коронки внедрение резца в мягкую породу всегда больше, чем в твердую. Этому же способствует разрушение буровым инструментом породы в стенке скважины, особенно при переходе из мягкой в твердую породу.

Интенсивность этого искривления в значительной мере определяется частотой перемежаемости пластов, изменчивостью их твердости и длительностью бурения на контакте между пластами.

Замечено, что чем значительнее неоднородность пород, тем больше искривление скважины.

В связи с этим наибольшее искривление скважин в вертикальной плоскости наблюдается при бурении по сланцам, где интенсивность искривления может достигать iθ = 0,07 град/м; наименьшее – в однородных монолитных породах, в которых часто iθ = 0,001 град/м.

При переходе скважины из породы одной твердости в другую большое значение имеет угол встречи ее с пластом γ. В зависимости от величины этого угла скважина может пойти: 1) без изменения своего первоначального направления, что характерно для горизонтально и полого залегающих осадочных пород; 2) искривившись в сторону твердой породы, и, реже, 3) пойти по контакту мягкой и твердой пород вниз по падению пласта. Последнее происходит при крутом залегании пород и в тех случаях, когда угол встречи γ не превосходит по величине некоторое критическое значение γкр (рис. 6.1, а, б).

 
 

Величина критического угла встречи изменяется для различных пород в пределах от 15 до 20°. На величину этого угла оказывают влияние: 1) тип породоразрушающего инструмента, 2) осевая нагрузка, 3) сила трения, возникающая между породоразрушающим инструментом и породой в процессе бурения и 4) твердость пород.

 
 

 
 

а б

Рис. 6.1. Отклонение ствола скважины при Рис. 6.2. Отклонение скважины от
переходе из мягких пород в более твердые: заданного азимутального направления

а – при угле встречи более 20°, б – при углевстречипри пересечении слоев пород
менее 15°. 1 – проектное направление скважины; различной твердости:
2 – положение отклонившейся скважины, δ – угол 1 – резцы; 2 – тело коронки; 3 – направ-
отклонения оси скважины, γ – угол встречи ление отклонения скважины

При встрече твердых перемежающихся и абразивных пород движение бурового инструмента по падению пласта наблюдается при меньшем значении критического угла встречи γкр, чем при встрече твердой породы, но неабразивной.

С увеличением осевой нагрузки на породоразрушающий инструмент угол γкр, при котором скважина может пойти по падению пород, возрастает. Угол встречи скважины с пластом для снижения интенсивности искривления выбирают более 50°.

Перемежаемость неоднородных по твердости пород часто является причиной азимутального искривления скважин. При этом скважина может отклоняться влево или вправо, если смотреть по падению пласта, в зависимости от угла ее встречи с линией простирания пород и характера контакта, а также от соотношения сил сопротивления, воздействующих на породоразрушающий инструмент в твердой и мягкой породах (рис. 6.2).

При бурении скважина отклоняется в одной плоскости, если равнодействующая этих сил направлена перпендикулярно простиранию пород. При направлении равнодействующей под углом к простиранию пород может произойти азимутальное искривление.

Влияние структурных и текстурных особенностей пород на искривление скважин в достаточной степени отражается в их анизотропных свойствах.

Наибольшими анизотропными свойствами обладают различные слоистые горные породы. Анизотропностью обладают и некоторые другие породы, которые приобрели эти свойства в силу различных сдвиговых процессов, например: развития в породах сланцеватости, кливажа, трещиноватости и т. п. Поэтому метаморфизованные, раздробленные и трещиноватые породы также относят к породам с высокой степенью анизотропности. В меньшей степени анизотропность проявляется у изверженных пород. Некоторые из осадочных горных пород можно отнести к изотропным. К ним условно относят мел, мергель, известняк и др.

Существует общая закономерность, по которой породоразрушающий инструмент всегда избирательно сдвигается в направлении наименьшего сопротивления породы. Скважина при этом стремится развернуться в направлении, перпендикулярном слоистости.

Влияние геологических структур на искривление скважин. Скважины, закладываемые в бортах антиклинальных и синклинальных складок, как правило, имеют тенденцию отклоняться в процессе бурения в направлении, перпендикулярном простиранию пород. Азимутально скважины чаще всего отклоняются в направлении, перпендикулярном оси антиклинали.

В связи с этим по азимутальному искривлению скважин можно производить уточнение простирания пород.

С глубиной скважин интенсивность азимутального искривления чаще остается неизменной.

Рассмотренные причины искривления скважин носят в основном закономерный характер.

При встрече в породах твердых включений, валунов, твердых конкреций и т. п. искривления скважин могут происходить как в вертикальной, так и в горизонтальной плоскостях.

Значительные искривления скважин, особенно наклонных, происходят в мягких несцементированных породах, в зонах тектонических нарушений, пустот и т. д.

К искривлению скважин могут привести обвалы, осыпи пород. Известны случаи забуривания нескольких новых скважин в месте завалов, что характерно для глинистых пород. Такие отклонения скважин чаще всего незакономерны.

Изучение закономерности искривления позволяет заранее проектировать так называемый типовой профиль скважин с учетом естественного ее искривления на каждом конкретном месторождении.

Технические причины оказывают влияние на искривление скважин как при их забурке, так и в процессе бурения.

На искривление скважин при забурке влияет:

1) неправильная установка станка на основании;

2) неправильная установка шпинделя станка и направляющей трубы;

3) ненадежное закрепление вращателя на верхней станине станка;

4) неисправность вращателя – разработка втулок, наличие люфтов, износ направляющих штоков, подшипников качения и т. д.

Установка станка с наклоном в вертикальной плоскости приводит к увеличению или уменьшению зенитного угла.

В процессе бурения технические причины проявляются в перекосе бурового снаряда, который вызывается, как правило, применением: а) изогнутых буровых штанг и колонковых труб, б) несоосностью резьбовых соединений.

При применении короткого колонкового набора ось его отклоняется тем больше, чем короче его длина. При этом если используются колонковые трубы, имеющие некоторый начальный прогиб, отклонения могут увеличиваться. Однако следует иметь в виду, что на искривление скважин значительное влияние оказывает продольная устойчивость колонковых труб, которая снижается при увеличении их длины и уменьшении диаметра. Снижению устойчивости бурового снаряда способствует разностенность труб, их овальность и местные дефекты, связанные с изготовлением и эксплуатацией.

Искривление скважин наблюдается при применении неправильных компоновок бурового снаряда, при переходе с большего диаметра скважины на меньший и при расширении скважины (рис. 6.3). Искривление скважин усиливается несоответствием диаметров бурильных труб и скважины, при этом чем больше разница, тем интенсивнее искривление скважины.

При работе всегда стремятся свести на нет искривление скважин, вызываемое техническими причинами.

Технологические причины, приводящие к искривлению скважин, в первую очередь связаны со способом и режимом бурения. Опыт бурения показывает, что наименьшая степень интенсивности искривления присуща ударному, в несколько большей мере ударно-вращательному и наибольшая – вращательному способам. При вращательном бурении скважина закономерно отклоняется чаще в сторону вращения бурового инструмента.

Искривление скважин при колонковом бурении определяется видом истирающего материала, конструкцией породоразрушающего инструмента, а также режимными параметрами.

Интенсивность искривления во многом зависит от степени разработки стенок скважины, в которой находят отражение перечисленные факторы. При этом чем больше разработка ствола скважины, тем интенсивнее искривление.

Наименьшая степень разработки ствола скважин наблюдается при алмазном бурении: она составляет в породах VII–VIII категорий по буримости 1–1,5 мм; в породах X–XII категорий – до 0,5–1 мм. Объясняется это малым выходом резцов за боковые стороны коронки.

По степени разработки ствола скважины все виды колонкового бурения в зависимости от истирающего материала можно расположить в следующий ряд:

алмазное – твердосплавное – дробовое бурение.

При применении твердосплавных коронок наибольшая степень разработки стенок скважины имеет место при бурении по осадочным породам ребристыми коронками. Диаметр скважин в этих условиях может быть увеличен в процессе бурения в 2–3 раза.

Разбуривание стенок скважин при бурении дробью различно и зависит от 1) материала, диаметра дроби и коронки; 2) способа питания забоя дробью; 3) от количества подаваемой на забой промывочной жидкости и т. д.

Крупная чугунная и стальная дробь вне зависимости от способа питания вызывает более сильную разработку стенок скважины, чем мелкая дробь.

При всех видах истирающих материалов колонна бурильных труб под действием продольных сжимающих и поперечных центробежных сил теряет прямолинейную форму и, как правило, изгибается. Отклонение скважины может происходить с большей интенсивностью при малой жесткости колонны бурильных труб и колонкового снаряда и значительном зазоре между стенками скважины и буровым снарядом.

Бурение шарошечными долотами характеризуется большей степенью разработки стенок скважины. При этом чем мягче порода и больше величина зубьев шарошек, тем больше диаметральная разбуриваемость стволов скважин. При бурении шарошечными штыревыми долотами в крепких породах разбуриваемость стенок, а следовательно, и величина искривления скважин значительно понижаются.

Повышая величину осевой нагрузки, можно добиться значительной интенсивности искривления, особенно в случаях: 1) бурения затупленными коронками; 2) применения коротких колонковых труб;
3) при применении специальных шарнирных устройств в составе снаряда.

С уменьшением осевого усилия в этих случаях искривление скважин снижается.

Этим пользуются при искусственном искривлении скважины, когда бурение ведут по заранее рассчитанным профилям.

Увеличение числа оборотов бурового снаряда рассматривается как фактор, способствующий снижению интенсивности искривления.

При повышении числа оборотов бурового инструмента возрастает механическая скорость бурения, а поэтому уменьшается время действия сил, вызывающих искривление скважины.

Применение высоких скоростей вращения бурового снаряда с использованием антивибрационных смазок и эмульсионных промывочных растворов способствует снижению интенсивности искривления скважин.

Влияние количества и качества промывочной жидкости на интенсивность искривления велико при бурении по легко размываемым породам. Применение в этих условиях промывочного раствора плохого качества может вызвать значительный размыв стенок скважин, а соответственно и более интенсивное отклонение оси бурового инструмента от оси скважины.

Почти во всех случаях режимные параметры, если они обеспечивают достижение максимальной скорости бурения, способствуют минимальному искривлению скважин, т. к. при этом уменьшается время, необходимое для создания условий, способствующих искривлению скважин на данном ее интервале.

Таким образом, можно сделать следующие выводы к разделу 6.1.

1. Основная причина, непосредственно вызывающая искривление вертикальных скважин, – неравномерная разработка площади забоя в разных направлениях, что приводит в процессе бурения к смещению забоя в пространстве.

2. Неравномерное разрушение забоя происходит при определенных геологических и технологических условиях.

3. Неравномерное разрушение стенок наклонно проходимых скважин в призабойной зоне вызывается действием веса бурильного инструмента.

4. Необходимое условие, которое приводит к искривлению скважины, – несовпадение оси низа бурильного инструмента с осью скважины под действием отклоняющего усилия. Последнее возникает в нижней части бурильного вала при взаимодействии в основном изгибающих (от совместного действия центробежных сил и усилий веса) и скручивающих (от передачи вращательного момента породоразрушающему инструменту на забое) сил.

5. Геологические условия – основная причина, вызывающая искривление вертикально заданных скважин.

6. Технические условия хотя и не приводят непосредственно к неравномерному разрушению забоя, однако играют большую роль в выполнении задач, поставленных перед скважиной.

Анализ зависимости между прямыми (интенсивность искривления скважин) и косвенными (глубина или угол наклона скважин) показателями позволяет получить обобщенные данные об искривлении скважин, что имеет большое значение для определения закономерностей этого процесса. При этом нужно учитывать следующее:

· искривления скважин характеризуются определенными закономерностями, которые для разных месторождений различны;

· интенсивность искривления в основном зависит от степени разбуривания стенок скважин в процессе бурения;

· степень разбуривания стенок скважин зависит от выбранного технологического режима. Оптимальному технологическому режиму, т. е. правильно выбранным осевой нагрузке, частоте вращения породоразрушающего инструмента, расходу промывочной жидкости соответствует меньшая степень разбуривания стенок скважины и, следовательно, меньшая интенсивность искривления;

· интенсивность искривления зависит также от жесткости низа бурильного инструмента: чем он жестче, тем меньше темп искривления скважин;

· при равных условиях скважины с большим диаметром искривляются меньше, чем с меньшим;

· интенсивность искривления зависит от частоты воздействия геологических факторов, а также от угла наклона скважины к горизонту на данном интервале бурения;

· в закономерном наборе зенитного угла большую роль играет угол падения пород: чем больше этот угол, тем больше интенсивность искривления скважин, заданных с поверхности под одним и тем же углом;

· угол встречи, под которым породоразрушающий инструмент (ось инструмента) встречает плоскость напластования пород, также закономерно влияет на характер искривления; для различных пород критический угол встречи будет также различным;

· интенсивность искривления зависит главным образом от частоты действия геологических факторов;

· при малых зенитных углах угол встречи оказывает большое влияние на направление искривления скважин: при углах встречи до 15° скважины подвержены сильному азимутальному искривлению, при углах встречи 15–20° и больше скважины искривляются преимущественно по восстанию пересекаемых пород;

· при переходе из пород легкобуримых к породам с более высокими физико-механическими свойствами или наоборот иногда происходят незакономерные искривления скважин в горизонтальной плоскости;

· при зенитных углах 0–20° преобладает влияние геологических факторов, а свыше 20° – технологических условий, и скважины искривляются в горизонтальной плоскости вполне закономерно;

· азимутальные и зенитные углы характеризуют искривление скважины в пространстве, поэтому между ними наблюдается определенная зависимость, тоже связанная с геологическими и технологическими условиями;

· чем интенсивнее увеличение численных значений зенитного угла, тем выдержаннее направление искривления;

· кроме интенсивности искривления на направление искривления ствола скважины влияет величина зенитного угла в данном интервале. При зенитном угле до 20–25° происходит относительно большая стабилизация азимутального направления при той же интенсивности увеличения зенитного угла;

· направление искривления скважин, пробуренных на синклинальных и антиклинальных складках, различно. Так, в пределах синклинали стволы скважины отклоняются в основном вверх по восстанию крыльев складки, а в пределах антиклинали – вверх по падению, если складка пологая. При крутых крыльях скважины отклоняются вниз по падению крыльев и реже параллельно осевой плоскости складок;

· скважины при всех видах вращательного бурения искривляются азимутально как вправо, так и влево;

· направление и интенсивность искривления скважин определяются их положением по отношению к падению и простиранию пород, физико-механическими свойствами отложений, величиной угла встречи оси низа бурильного инструмента с плоскостью напластования пород и направлением вращения породоразрушающего инструмента.

Таким образом, искривление скважин носит закономерный характер, зависящий прежде всего от геолого-структурных условий бурения и физико-механических свойств пород, слагающих забой и стенки скважины.

Получение достоверных данных о закономерностях искривления скважин имеет большое практическое значение, т. к. позволяет решать при выполнении буровых работ следующие основные задачи: бурение скважин с минимальными затратами средств; определение реальных норм искривления проектируемых скважин и значений начальных углов их заложения; контроль за пространственным положением проходимых скважин; построение профилей пробуренных скважин, геологических разрезов и карт.



2015-11-27 3761 Обсуждений (0)
Борьба с прихватами бурильной колонны 4.75 из 5.00 4 оценки









Обсуждение в статье: Борьба с прихватами бурильной колонны

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3761)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)