Мегаобучалка Главная | О нас | Обратная связь


Паттерны внутри паттернов



2015-11-27 399 Обсуждений (0)
Паттерны внутри паттернов 0.00 из 5.00 0 оценок




 

Причина, по которой мы затеяли этот экскурс в историю комплексных чисел, заключается в том, что многие фрактальные формы могут быть воспроизведены математически, с помощью итеративных процедур на комплексной плоскости. В конце 70-х годов, опубликовав свою новаторскую книгу, Мандельбро обратил внимание на особый класс математических фракталов, известных как множества Жулиа 32 . Эти множества были открыты французским математиком Гастоном Жулиа в начале XX столетия, но скоро канули в безвестность. Интересно отметить, что Мандельбро впервые наткнулся на работы Жулиа еще студентом, посмотрел на его примитивные рисунки (выполненные в те времена без помощи компьютера) и потерял к ним интерес. Спустя полвека, однако, Мандельбро понял, что рисунки Жулиа представляют собой грубые наброски сложных фрактальных форм; и он принялся подробно воспроизводить их с помощью самых мощных компьютеров, какие только сумел найти. Результаты оказались поразительными.

В основу множества Жулиа положено простое отображение

 

Z → Z 2 + С,

 

Где z — комплексная переменная, а с — комплексная постоянная. Итеративная процедура состоит в выборе любого числа z на комплексной плоскости, возведении его в квадрат, добавлении константы с, возведении результата в квадрат, добавлении к нему константы с и т. п. Когда это вычисление выполняется с различными начальными значениями z , некоторые из них будут увеличиваться до бесконечности в ходе процесса итерации, в то время как другие остаются конечными33. Множество Жулиа — это набор всех тех значений z, или точек на комплексной плоскости, которые при итерации ограничены некоторым пределом, т. е. конечны.

 

Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время.

Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34.

 

Рис. 6-18. Разнообразие множеств Жулиа. Из Peitigen and Richter (1986)

Богатство и разнообразие форм, многие из которых напоминают живые создания, просто поражает. Однако настоящие чудеса начинаются, когда мы увеличиваем очертания любой части множества Жулиа. Как и в случае с облаком или береговой линией, такое же богатство отображается на всех уровнях диапазона исследования. С увеличением степени разрешения (т. е. когда все больше и больше знаков после точки учитывается при вычислении числа z ) появляется все больше и больше деталей контура фрактала и обнаруживается фантастическая последовательность паттернов внутри паттернов — похожих, но никогда не идентичных друг другу.

Когда Мандельбро в конце 70-х годов анализировал различные математические проявления множеств Жулиа, пытаясь классифицировать их бесконечное многообразие, он открыл очень простой способ создания единого изображения на комплексной плоскости, которое может служить своеобразным каталогом всех возможных множеств Жулиа. Это изображение, с тех пор ставшее основным визуальным символом новой математики сложных систем, называется множеством Мандельбро (рис. 6-19). Это просто совокупность на комплексной плоскости всех точек с константой с, для которых соответствующие множества Жулиа представляют единые связные области. Чтобы построить множество Мандельбро, таким образом, следует построить отдельное множество Жулиа для каждой точки с на комплексной плоскости и определить, является ли это конкретное множество связным или разделенным. Например, среди множеств Жулиа, изображенных на рис. 6-18, три набора в верхнем ряду и один в центре нижнего ряда — связны (т. е. каждое из них представляет собой единую фигуру), в то время как крайние наборы в нижнем ряду разделены (т. е. состоят из нескольких отдельных областей).

 

Рис. 6-19. Множество Мандельбро. Из Peitgen and Richter (1986)

 

 

Генерирование множеств Жулиа для нескольких тысяч значений с, каждое из которых складывается из тысяч точек, требующих многократных итераций, представляется невыполнимой задачей. Однако к счастью, существует мощная теорема, сформулированная самим Гастоном Жулиа, которая значительно сокращает количество необходимых шагов35. Чтобы выяснить, является ли конкретное множество Жулиа связным или разделенным, следует просто произвести итерацию для начальной точки z = 0. Если после нескольких итераций значение в этой точке остается конечным, т. е. имеет некоторый конечный предел, то множество Жулиа будет связным, каким бы фантастичным оно ни выглядело; если же это значение стремится к бесконечности, множество всегда будет разъединенным. Поэтому, чтобы построить множество Мандельбро, необходимо выполнить итерацию лишь в одной точке, z = 0, для каждого значения с. Иными словами, для построения множества Мандельбро требуется такое же количество шагов, как и для множества Жулиа.

В то время как существует бесконечное количество множеств Жулиа, множество Мандельбро уникально. Эта странная фигура представляет собой самый сложный математический объект из всех когда-либо изобретенных. И хотя правила его построения очень просты, многообразие и сложность, которые он проявляет при ближайшем рассмотрении, просто невероятны. Когда множество Мандельбро строится на фиксированной координатной сетке, на экране компьютера появляются два диска: меньший имеет относительно круглую форму, больший отдаленно напоминает очертания сердца. На каждом из двух дисков выделяется несколько небольших дискообразных наростов, расположенных вдоль границ диска, а дальнейшее повышение разрешения выявляет изобилие все более мелких наростов, напоминающих колючие шипы.

Начиная с этого момента, богатство образов, выявляемых расширением границ множества (т. е. повышением разрешающей способности вычислений), почти не поддается описанию. Такое путешествие вглубь множества Мандельбро, особенно зафиксированное на видеопленке, представляет собой незабываемый опыт36. По мере того как масштаб съемки растет и изображение границы укрупняется, кажется, что прорастают побеги и усики, которые, после очередного увеличения, растворяются в огромном количестве форм — спиралей внутри спиралей, морских коньков и водоворотов, снова и снова повторяющих одни и те же паттерны (рис. 6-20).

Математика сложных систем

 

 

Рис. 6-20.



2015-11-27 399 Обсуждений (0)
Паттерны внутри паттернов 0.00 из 5.00 0 оценок









Обсуждение в статье: Паттерны внутри паттернов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (399)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)