Влияние давления на температуру плавления
Если изменить давление, то изменится и температура плавления. С такой же закономерностью мы встречались, когда говорили о кипении. Чем больше давление; тем выше температура кипения. Как правило, это верно и для плавления. Однако имеется небольшое число веществ, которые ведут себя аномально: их температура плавления уменьшается с увеличением давления. Дело в том, что подавляющее большинство твердых тел плотнее своих жидкостей. Исключение из этого дравила составляют как раз те вещества, температура плавления которых изменяется при изменении давления не совсем обычно, например вода. Лед легче воды, и температура плавления льда понижается при возрастании давления. Сжатие способствует образованию более плотного состояния. Если твердое тело плотнее жидкого, то сжатие помогает затвердеванию и мешает плавлению. Но если плавление затрудняется сжатием, то это значит, что вещество остается твердым, тогда как раньше при этой температуре оно уже плавилось бы, т. е. при увеличении давления температура плавления растет. В аномальном случае жидкость плотнее твердого тела, и давление помогает образованию жидкости, т. е. понижает температуру плавления. Влияние давления на температуру плавления много меньше аналогичного эффекта для кипения. Увеличение давления более чем на 100 кгс/см2 понижает температуру плавления льда на 1°С. Почему же коньки скользят только по льду, но не по столь же гладкому паркету? Видимо, единственное объяснение - это образование воды, которая смазывает конек. Чтобы понять возникшее противоречие, нужно вспомнить следующее: тупые коньки скользят по льду очень плохо. Коньки надо заточить, чтобы они резали лед. В этом случае на лед давит лишь острие кромки конька. Давления на лед достигают десятков тысяч атмосфер, лед все-таки плавится. Испарение твердых тел Когда говорят "вещество испаряется", то обычно подразумевают, что испаряется жидкость. Но твердые тела тоже могут испаряться. Иногда испарение твердых тел называют возгонкой. Испаряющимся твердым телом является, например, нафталин. Нафталин плавится при 80°С, а испаряется при комнатной температуре. Именно это свойство нафталина и позволяет применять его для истребления моли. Меховая шуба, засыпанная нафталином, пропитывается парами нафталина и создает атмосферу, которую моль не выносит. Всякое пахнущее твердое вещество возгоняется в значительной степени. Ведь запах создается молекулами, оторвавшимися от вещества и достигшими нашего носа. Однако более часты случаи, когда вещество возгоняется в незначительной степени, иногда в такой, которая не может быть обнаружена даже очень тщательными исследованиями. В принципе любое твердое вещество (именно любое, даже железо или медь) испаряется. Если мы не обнаруживаем возгонки, то это значит лишь, что плотность насыщающего пара очень незначительна. Можно убедиться в том, что ряд веществ, имеющих острый запах при комнатной температуре, теряет его при низкой. Плотность насыщенного пара, находящегося в равновесии с твердым телом, быстро растет с увеличением температуры. Это поведение мы проиллюстрировали кривой для льда, показанной на рис. 4.10. Правда, лед не пахнет... Рис. 4.10 Существенно увеличить плотность насыщенного пара твердого тела в большинстве случаев нельзя по простой причине - вещество раньше расплавится. Испаряется и лед. Это хорошо знают домашние хозяйки, которые в морозы вывешивают сушить мокрое белье" Вода сначала замерзает, а затем лед испаряется, и белье оказывается сухим. Тройная точка Итак, имеются условия, при которых пар, жидкость и кристалл могут попарно существовать в равновесии. Могут ли находиться в равновесии все три состояния? Такая точка на диаграмме давление - температура существует, ее называют тройной. Где она находится? Если поместить в закрытый сосуд при нуле градусов воду с плавающим льдом, то в свободное пространство начнут поступать водяные (и "ледяные") пары. При давлении паров 4,6 мм рт. ст. испарение прекратится, и начнется насыщение. Теперь три фазы - лед, вода и пар - будут в состоянии равновесия. Это и есть тройная точка. Соотношения между различными состояниями наглядно и отчетливо показывает диаграмма для воды, изображенная на рис. 4.11. Рис. 4.11 Такую диаграмму можно построить для любого тела. Кривые на рисунке нам знакомы - это кривые равновесия между льдом и паром, льдом и водой, водой и паром. По вертикали, как обычно, откладывается давление, по горизонтали - температура. Три кривые пересекаются в тройной точке и делят диаграмму на три области - жизненные пространства льда, воды и водяного пара. Диаграмма состояния - это сжатый справочник. Ее цель - дать ответ на вопрос, какое состояние тела устойчиво при таком-то давлении и такой-то температуре. Если в условия "левой области" поместить воду или пар, то они станут льдом. Если в "нижнюю область" внести жидкость или твердое тело, то получится пар. В "правой области" пар будет конденсироваться, а лед плавиться. Диаграмма существования фаз позволяет сразу же ответить, что произойдет с веществом при нагревании или при сжатии. Нагревание при неизменном давлении изобразится на диаграмме горизонтальной линией. Вдоль этой линии слева направо движется точка, изображающая состояние тела. На рисунке изображены две такие линии, одна из них - это нагревание при нормальном давлении. Линия лежит выше тройной точки. Поэтому она пересечет сначала кривую плавления, а затем, за пределами чертежа, и кривую испарения. Лед при нормальном давлении расплавится при температуре 0°С, а образовавшаяся вода закипит при 100°С. Иначе будет обстоять дело для льда, нагреваемого при очень небольшом давлении, скажем, чуть ниже 5 мм рт. ст. Процесс нагревания изобразится линией, идущей ниже тройной точки. Кривые плавления и кипения не пересекаются этой линией. При таком незначительном давлении нагревание приведет к непосредственному переходу льда в пар. На рис. 4.12 эта же диаграмма показывает, какое интересное явление произойдет при сжатии водяного пара в состоянии, помеченном на рисунке крестиком. Сначала пар превратится в лед, а затем расплавится. Рисунок позволяет тут же сказать, при каком давлении начнется рост кристалла и когда произойдет плавление. Рис. 4.12 Диаграммы состояния всех веществ похожи одна на другую. Большие, с житейской точки зрения, различия возникают из-за того, что место нахождения тройной точки на диаграмме может быть у разных веществ самым различным. Ведь мы существуем вблизи "нормальных условий", т. е. прежде всего при давлении, близком к одной атмосфере. Как расположена тройная точка вещества по отношению к линии нормального давления - для нас очень существенно. Если давление в тройной точке меньше атмосферного, то для нас, живущих в "нормальных" условиях, вещество относится к плавящимся. При повышении температуры оно сначала превращается в жидкость, а потом закипает. В обратном случае - когда давление в тройной точке выше атмосферного - мы при нагревании не увидим жидкости, твердое вещество будет прямо превращаться в пар. Так ведет себя "сухой лед", что очень удобно для продавцов мороженого. Брикеты мороженого можно перекладывать кусками "сухого льда" и не бояться при этом, что мороженое станет мокрым. "Сухой лед" - это твердый углекислый газ С02. Тройная точка этого вещества лежит при 73 атм. Поэтому при нагревании твердого СО2 точка, изображающая его состояние, движется по горизонтали, пересекающей только лишь кривую испарения твердого тела (так же, как и для обычного льда при давлении около 5 мм рт. ст.). Мы уже рассказали читателю, каким образом определяется один градус температуры по шкале Кельвина, или, как требует сейчас говорить система СИ,- один кельвин. Однако речь шла о принципе определения температуры. Не все институты метрологии обладают идеальными газовыми термометрами. Поэтому шкалу температуры строят с помощью фиксированных природой точек равновесия между разными состояниями вещества. Особую роль при этом играет тройная точка воды. Градус Кельвина определяют сейчас как 273,16-ю часть термодинамической температуры тройной точки воды. Тройная точка кислорода принята равной 54,361 К. Температура затвердевания золота положена равной 1337,58 К. Пользуясь этими реперными точками, можно точно отградуировать любой термометр.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3049)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |