Мегаобучалка Главная | О нас | Обратная связь


Сетевые, дренажные и прочие насосы ТЭС



2015-12-04 2320 Обсуждений (0)
Сетевые, дренажные и прочие насосы ТЭС 5.00 из 5.00 3 оценки




Установка сетевых насосов возможно в виде насосной группы без привязки к конкретным турбинам. Если число насосов не более трех в группе, предусматривают дополнительно один резервный насос; при большем числе работающих насосов резервные не требуются. При блочном принципе установки сетевых насосов их размещают по два у каждой турбины при мощности подачи по 50% от полной.

При установке подпиточных насосов теплосети предусматривают резерв не менее двух при закрытой и не менее трех насосов при открытой системе теплоснабжения.

Дренажные насосы регенеративных подогревателей устанавливают без резервов; насосы питательной воды испарителей, паропреобразователей и конденсатные насосы сетевой установки имеют резерв.

Выбор других насосов производится в зависимости от конкретных условий их работы. Так, два и более насоса устанавливают в аварийных системах, в элементах тепловой схемы, где требуются высокая надежность работы или имеется большая вероятность периодического выхода из строя насоса.

Газодувные машины ТЭС.

Газодувное или тягодутьевое устройство (ТУ), комплекс механизмов и сооружений, обеспечивающий подачу воздуха в топку котлоагрегата или печи и удаление дымовых газов из топки. К основным газодувным машинам ТЭС относятся дымососы и дутьевые вентиляторы.

В качестве вентиляторов горячего дутья и мельничных вентиляторов используются, как правило, центробежные машины, выбор которых производится по каталогу для конкретного котла. Дутьевые вентиляторы засасывают горячий воздух и направляют его в топку под давлением до 5 кН/м2.

ТУ, состоящие обычно из дымососов и дымовой трубы, создают в газоходах разрежение до 3-4 кн/м2, под воздействием которого газы удаляются в атмосферу. У котлоагрегатов, работающих под наддувом, ТУ включает лишь вентиляторы, подающие воздух под давлением около 10 кН/м2. Дымососы и вентиляторы ТУ обычно приводятся в действие электродвигателями, а на мощных котлоагрегатах - паровыми турбинами. ТУ тепловых электростанций потребляют 1-2% всей вырабатываемой станцией энергии.

Количество продуктов сгорания (топлива) и воздуха, перемещаемое этими машинами, определяется из теплового и аэродинамического расчета первого котла. Сами машины выбираются по каталогу с запасом по напору (15% для вентиляторов и 25% для дымососов) и количеству перемещаемых газов или воздуха (10%). На каждый котел устанавливается, как правило, по два дымососа и вентилятора, без резервных. При выходе из строя одного такого механизма другой обеспечивает работу парового котла на 50%-ной нагрузке. Для крупных блоков применяются осевые дымососы и дутьевые вентиляторы двухстороннего всасывания, имеющие высокий (более 80%) КПД и двухскоростные электродвигатели, позволяющие регулировать подачу и напор. Подачу дымососов и вентиляторов регулируют в основном направляющим аппаратом, устанавливаемым на входе потока газа или воздуха. В последние годы в качестве регулируемых электроприводов дымососов и вентиляторов находят применение более экономичные частотно-регулируемые асинхронные электроприводы.

 

Вопросы для самоконтроля.

1. Назовите назначение и перечислите основные характеристики парового котла.

2. Назовите основные виды котельных агрегатов и перечислите их основные элементы.

3. Опишите принцип устройства водяных экономайзеров и воздухоподогревателей используемых в котлах.

4. Как осуществляется подача воздуха и удаление дымовых газов в котлах.

5. Перечислите основные виды и назначение паровых турбин.

6. Какие виды насосного оборудования применяются на тепловых электростанциях?

 

 


Тема 3. Преобразования энергии на ТЭС

1.1 Общие сведения.

1.2 Главные паропроводы и питательные трубопроводы ТЭС

1.3 Системы регенеративного подогрева питательной воды и промежуточного перегрева

 

Общие сведения

Электрические станции на органическом топливе всегда используют перегретый пар. В настоящее время температура пара перед турбиной обычно достигает 540-560оС при давлении пара перед турбиной до 23,5 МПа.

Энергия сгораемого топлива идет на нагрев питательной воды и пара в паровом котле. Энергия пара парового котла (теплогенератора) преобразуется в механическую энергию вращения паровой турбины, расходуется на промежуточный перегрев пара, расходуется на регенерацию (регенеративный подогрев питательной воды), на теплофикацию самой электростанции и жилых массивов (сетевой подогрев) и др. Устройства, преобразующие внутреннюю энергию топлива собственно в механическую, называют тепловыми двигателями.

Термодинамическое состояние тепловых двигателей характеризуется важными термодинамическими функциями состояния – энтальпией и энтропией.

Энтальпия h – термодинамическая функция, характеризующая теплосодержание системы. Она определяемая соотношением:

 

h = U + pV, (1)

где U – внутренняя энергия системы;

p – давление пара;

V – объем пара.

Энтальпия отражает 1-й закон термодинамики - количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы. При постоянном давлении количество теплоты, поглощенной системой при переходе из одного состояния в другое, равно приращению энтальпии.

Энтропия s – термодинамическая функция, характеризующая изменение энергии в процессе перехода из одного равновесного состояния в другое. Энтропия отражает 2-й закон термодинамики, определяющий статистическую направленность изменения состояния системы – замкнутая система самопроизвольно переходит из менее вероятного в более вероятное состояние. В необратимых тепловых процессах, что характерно для любых тепловых двигателей, энтропия определяется соотношением:

 

sQ/T, (2)

 

где T – абсолютная температура системы;

Q – количество тепла, поглощенного системой.

Преобразование энергии на КЭС производится на основе термодинамического цикла Ренкина, в котором подвод тепла воде и водяному пару в котле и отвод тепла охлаждающей водой в конденсаторе турбины происходят при постоянном давлении, а работа пара в турбине и повышение давления воды в насосах - при постоянной энтропии.

В турбоустановках ТЭС преобразование теплоты в работу осуществляется по циклу Ренкина на перегретом паре, а на АЭС, как правило, на насыщенном паре (рисунок 1).

Цикл Ренкина - идеальный термодинамический цикл (круговой процесс), в котором совершается превращение теплоты в работу (или работы в теплоту); принимается в качестве теоретической основы для приближённого расчёта реальных циклов, осуществляемых в паросиловых установках. Назван по имени У. Дж. Ренкина, одного из создателей технической термодинамики. Цикл Ренкина осуществляется следующим образом: в паровом котле происходит испарение рабочего тела (воды); в пароперегревателе - перегрев пара при постоянном давлении; в паровой турбине пар адиабатически расширяется, совершая работу; в конденсаторе - конденсируется при постоянном давлении; конденсат подаётся насосом в экономайзер, где он подогревается, а затем – в котел, где испаряется. Работа 1 кг пара, совершаемая в цикле Ренкина, на диаграмме состояния характеризуется площадью О-К-1-2-О (рисунок 1а). Термический КПД цикла Ренкина равен отношению этой работы ко всему количеству теплоты, подведённому к 1 кг пара. КПД цикла Ренкина с насыщенным паром составляет 0,29-0,36, а с перегретым паром - 0,34-0,46. Цикл Ренкина отличается от цикла Карно тем, что подвод теплоты к воде и перегрев пара идут при постоянном давлении и возрастающей температуре.

 

Рисунок 1 - Термодинамический цикл Ренкина:

а - Т, s- диаграмма на перегретом и насыщенном паре; б - процессы в h, s- диаграмме; в - схема паротурбинной установки; А - паропроизводящая установка; В - турбина; С - турбогенератор; Д- конденсатор; Е- насос.

 

При идеальном протекании всех процессов, как показано на рисунке 1, энергетические показатели цикла на 1 кг перегретого пара определяются следующими соотношениями.

Работа, совершенная паром, равна теоретически располагаемому (адиабатному) теплоперепаду

 

. (3)

 

Теплота, отведенная в конденсаторе от отработавшего пара,

 

. (4)

 

Работа сжатия воды в насосе

 

 

где - удельный объем воды.

Теплота, подведенная к рабочему телу (располагаемая теплота турбины),

 

. (5)

 

Полезная теоретическая работа цикла

 

. (6)

 

Теоретический КПД турбины и термический КПД цикла Ренкина:

 

(7)

Для цикла на насыщенном паре используются аналогичные соотношения в которых энтальпии в точках 0 и К (h0, hк) заменены энтальпиям в точках 01, К1 (h01, hk1).

В реальных турбинах работа, совершаемая килограммом пара ωi и называемая удельной внутренней работой, равна действительному теплоперепаду ∆hi, т.е.

 

, (8)

 

который меньше адиабатного из-за необратимости процесса расширения.

Действительный теплоперепад в турбине определяется либо из детального поступенчатого расчета турбины, либо из соотношения

 

, (9)

 

где η0i - внутренний относительный КПД турбины или ее отдельных цилиндров. Если расчет турбины отсутствует, то η0i обычно определяют по аналогам, эмпирическим формулам или графикам.

С помощью равенств (8) и (9) определяется энтальпия пара за турбиной

 

(10)

 

и затем находится теплота отведенная в конденсаторе,

 

(11)

 

Из конденсатора вода откачивается насосом. В насосе происходит сжатие воды, и ее энтальпия возрастает на величину ∆hн, равную внутренней работе насоса:

(12)

 

где рн— давление за насосом на 30—40% большее, чем перед турбиной, из-за потерь давления в пароводяном тракте;

ηгид—гидравлический КПД насоса, учитывающий внутренние потери от трения, вихреобразования и т. п.

Полная работа насоса ωн больше внутренней из-за потерь в подшипниках, а также из-за протечек воды и составляет:

 

(13)

 

где ηм , ηоб - механический КПД насоса, учитывающий потери в подшипниках, и объемный КПД, учитывающий потери из-за протечек через уплотнения;

ηн =ηгид ηм ηоб - полный КПД насоса.

Работа, затраченная на привод насоса (электроэнергия или энергия пара), частично возвращается в цикл в виде теплоты, а небольшую часть составляют потери в подшипниках и с протечками.

Количество подведенной к 1 кг рабочего тела теплоты равно разности энтальпий пара и воды, поступающей из насоса в котел:

 

(14)

Внутренний абсолютный КПД турбины

 

. (15)

 

Если турбина вращает генератор мощностью Nэ киловатт, а 1 кг пара вырабатывает ωэ килоджоулей электроэнергии, то секундный расход пара на турбину составит:

 

D0=Nэ/ ωэ. (16)

 

Полное количество теплоты, подведенной к турбине за 1 с, измеренное в килоджоулях в секунду или, что то же самое, в киловаттах, равно

 

Q0=q0D0. (17)

 

Отношение мощности турбогенератора к количеству подведенной за 1 с теплоты

 

(18)

 

называется КПД турбоустановки по выработки электроэнергии.

Отношение отпущенной мощности к подведенной к турбине теплоте:

 

 

есть КПД турбоустановки по отпуску электроэнергии или КПД нетто турбоустановки.

Тепловую экономичность турбоустановок часто характеризуют величиной обратной КПД по выработке электроэнергии и называемой удельным расходом теплоты на выработанную электроэнергию:

 

или .

 

Выше рассматривались простые турбоустановки, в которых расход пара через все ступени турбины сохраняется одинаковым (отборы отсутствуют) и промежуточный перегрев пара не производится.

КПД реального термодинамического цикла Ренкина составляет 0,5-0,55, внутренний относительный КПД турбины 0,8-0,9, механический КПД турбины 0,98-0,99, КПД электрического генератора 0,98-0,99, КПД трубопроводов пара и воды 0,97-0,99, КПД котлоагрегата 0,9-0,94. Общий КПД современной КЭС - 35-42%.

Увеличение КПД КЭС достигается главным образом повышением начальных параметров (начальных давления и температуры) водяного пара, совершенствованием термодинамического цикла, а именно - применением промежуточного перегрева пара и регенеративного подогрева конденсата и питательной воды паром из отборов турбины. На КЭС по технико-экономическим основаниям применяют начальное давление пара докритическое 13-14, 16-17 или сверхкритическое 23-25МПа, начальную температуру свежего пара, а также после промежуточного перегрева 540-570 °С. Промежуточный перегрев пара применяют обычно одноступенчатый, на некоторых зарубежных КЭС сверхкритического давления - двухступенчатый. Число регенеративных отборов пара 7-9, конечная температура подогрева питательной воды 260-300°С. Конечное давление отработавшего пара в конденсаторе турбины 0,003-0,005 МН/м2.

Часть вырабатываемой электроэнергии потребляется вспомогательным оборудованием КЭС (насосами, вентиляторами, угольными мельницами и т. д.). Расход электроэнергии на собственные нужды пылеугольной КЭС составляет до 7%, газомазутной -до 5%. Значительная часть (около половины энергии на собственные нужды) расходуется на привод питательных насосов. На крупных КЭС применяют паротурбинный привод; при этом расход электроэнергии на собственные нужды снижается. Различают КПД КЭС брутто (без учёта расхода на собственные нужды) и КПД КЭС нетто (с учётом расходов на собственные нужды). Энергетическими показателями, равноценными КПД, служат также удельные (на единицу электроэнергии) расходы тепла и условного топлива с теплотой сгорания 29,3 МДж/кг (7000 кКал/кг), равные для КЭС 8,8 - 10,2 Мдж/квт×ч (2100 - 2450 кКал/кВт×ч) и 300-350 г/кВт×ч. Повышение КПД, экономия топлива и уменьшение топливной составляющей эксплуатационных расходов обычно сопровождаются удорожанием оборудования и увеличением капиталовложений. Выбор оборудования КЭС, параметров пара и воды, температуры уходящих газов котлоагрегатов и т. д. производится на основе технико-экономических расчётов, учитывающих одновременно капиталовложения и эксплуатационные расходы (расчётные затраты).

 



2015-12-04 2320 Обсуждений (0)
Сетевые, дренажные и прочие насосы ТЭС 5.00 из 5.00 3 оценки









Обсуждение в статье: Сетевые, дренажные и прочие насосы ТЭС

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2320)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)