Мегаобучалка Главная | О нас | Обратная связь


МЕТИЛИРОВАНИЕ ДНК В РЕГУЛЯЦИИ ТРАНСКРИПЦИИ



2015-12-06 764 Обсуждений (0)
МЕТИЛИРОВАНИЕ ДНК В РЕГУЛЯЦИИ ТРАНСКРИПЦИИ 0.00 из 5.00 0 оценок




Единственной известной генетически запрограммированной ковалентной модификацией ДНК у высших эукариот является метилирование остатков цитозина в положении 5 с образованием 5-метилцитозина (5-тС). Эта реакция катализируется ферментом (цитозин-5)-ДНК-метилтрансферазой (Мтазой), который обнаружен у прокариот и эукариот.

Большинство прокариотических Мтаз способны метилировать ДНК de novo, распознавая неметилированные палиндромные гексануклеотидные последовательности. Они также метилируют последовательности, в которых одна цепь ДНК уже содержит метильные группы. В отличие от этого эукариотические Мтазы относятся к "поддерживающим" ферментам, которые узнают и метилируют только наполовину метилированные последовательности, формирующиеся во время репликации ДНК, когда вновь синтезированная цепь неметилирована. У млекопитающих остатки С метилируются преимущественно в составе динуклеотидов CpG. В геноме позвоночных животных метилировано ~70% динуклеотидов CpG и ~6-7% всех остатков цитозина.

"Поддерживающие" Мтазы животных обладают небольшой способностью осуществлять метилирование ДНК и de novo в полностью неметилированных участках, а также искусственных субстратов (олигонуклеотидов), содержащих ошибочно спаренные основания. Остается непонятным, является ли указанное свойство Мтаз достаточным для осуществления метилирования de novo обширных участков генома в эмбриогенезе или же этот процесс происходит с участием других ферментов. Известно, что гомозиготные делеции в гене Мтазы у мышей вызывают гибель зародышей в раннем эмбриогенезе, что указывает на важную роль метилирования ДНК в онтогенезе млекопитающих. Однако даже у таких мутантных эмбрионов небольшая часть последовательностей ДНК метилирована.

Метилирование остатков цитозина оказывает влияние на структурные характеристики ДНК. Это проявляется в облегчении перехода метилированных участков ДНК из В-формы в Z-форму, увеличении шага спирали ДНК и изменении кинетики образования крестообразных структур. Метильная группа 5-mС выступает на поверхности большой бороздки ДНК, находящейся в В-форме, и увеличивает ее гидрофобность, что в ряде случаев является решающим фактором при взаимодействии белков с соответствующими участками ДНК.

 

Регуляция экспрессии генов с помощью метилирования ДНК.

Метилирование остатков С может оказывать влияние на транскрипцию как непосредственно через изменение эффективности связывания позитивных и негативных факторов транскрипции со своими регуляторными участками на ДНК, так и опосредованно через формирование неактивных в транскрипционном отношении участков хроматина.

Поскольку 5-mС структурно подобен тимину, метилирование остатков С может сопровождаться возникновением новых консенсусных последовательностей для некоторых факторов транскрипции.

В частности, метилирование превращает низкоаффинный сайт связывания фактора транскрипции АР-1 (CGAGTCA) в высокоаффинный сайт (mCGAGTCA), который соответствует консенсусному сайту для этого фактора (TGAGTCA).

Известные промоторы, за небольшим исключением, неактивны в метилированном состоянии. Единственная метильная группа, введенная в промотор гена тимидинкиназы вируса простого герпеса или в С-промоторы вируса Эпштейна-Барр, может оказывать большое негативное влияние на транскрипцию. Уровень подавления активности других промоторов, в частности промоторов α- и γ-глобиновых генов человека или промотора мышиного гена MyoDI, находится в прямой зависимости от числа введенных в них метильных групп, но не от их положения в промоторах. Ингибирование транскрипции, вызванное частичным метилированием промоторов, может преодолеваться с помощью энхансеров, однако полностью метилированные промоторы не реактивируются энхансерами и сохраняют свое репрессированное состояние, несмотря на присутствие последних. На основании такого рода данных высказывается предположение, что метилирование ДНК регулирует транскрипцию по принципу "все или ничего" и не обеспечивает тонкой регуляции экспрессии генов.

 

Влияние метилирования ДНК на структуру хроматина

Характер метилирования ДНК может оказывать решающее влияние на структуру хроматина и фазирование нуклеосом. Термином "фазирование" обозначают неслучайное расположение нуклеосом относительно конкретной последовательности нуклеотидов ДНК в определенных участках генома. Большинство нуклеосом генома животных располагаются на ДНК случайно. В редких случаях фазирования последовательности нуклеотидов упаковываются в нуклеосомы одним и тем же способом во всех клетках организма, что может оказывать влияние на эффективность транскрипции и репликации ДНК в соответствующих локусах. В настоящее время у млекопитающих описано несколько белков, которые взаимодействуют преимущественно с метилированной ДНК.

Ярким примером подавления экспрессии генов путем формирования хроматина, структурированного специфическим образом, является инактивация одной из Х-хромосом самок млекопитающих. Большинство генов неактивной Х-хромосомы прекращает свою экспрессию в раннем эмбриогенезе независимо от наличия в ней CpG-последовательностей. При этом метилирование ДНК и ацетилирование гистона Н4 усиливают и стабилизируют репрессированное состояние неактивной Х-хромосомы.

Активация генов, входящих в состав неактивного хроматина, требует изменения структуры хроматина и деметилирования ДНК. Обнаружены белковые комплексы, способные реактивировать неактивный хроматин. Деметилирование может происходить пассивно через подавление функционирования поддерживающих Мтаз. В этом случае дочерние цепи ДНК, образующиеся в процессе репликации, остаются неметилированными,что приводит к полному деметилированию ДНК после двух раундов репликации. Активное деметилирование ДНК происходит с участием специфических ферментов - деметилаз.

Гены, входящие в состав неактивного хроматина, в большинстве своем недоступны действию факторов транскрипции. Формирование неактивного хроматина через метилирование специфических последовательностей приводит к уменьшению линейных размеров генома и числа регуляторных последовательностей, доступных факторам транскрипции. Следствием этого является снижение неспецифических взаимодействий регуляторных белков с соответствующими последовательностями генов, что, в свою очередь, уменьшает уровень информационного шума в генетической системе, который может появляться в результате неконтролируемой транскрипции. В этой связи высказывается предположение о важной роли не только генетических, но и видоспецифических эпигенетических изменений в эволюции высших эукариот. Действительно, наследуемый характер паттернов метилирования геномной ДНК способствует стабилизации и распространению в популяциях специфических структур хроматина, а изменение паттернов через эпигенетические мутации может быть одним из путей повышения пластичности генетической информации и ее разнообразия, что может служить материалом для естественного отбора.

 



2015-12-06 764 Обсуждений (0)
МЕТИЛИРОВАНИЕ ДНК В РЕГУЛЯЦИИ ТРАНСКРИПЦИИ 0.00 из 5.00 0 оценок









Обсуждение в статье: МЕТИЛИРОВАНИЕ ДНК В РЕГУЛЯЦИИ ТРАНСКРИПЦИИ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (764)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)