Если охлаждение идет быстро, то диффузия пройти не успевает, образуются
Тонкие пластины Ф и Ц, структура перлита будет мелкодисперсной, от которой зависти твердость стали. Чем крупнее перлитные пластины, тем меньше твердость и наоборот. Поэтому, при медленном охлаждении твердость стали всегда получится меньше. Изотермическая диаграмма распада.
Четвертое превращение М®П. Структура закаленной стали, то есть М является т/д неустойчивой. Это объясняется, во-первых чрезмерным количеством с в твердом растворе. Во-вторых, большим количеством внутренних дефектов кристаллического строения, в-третьих наличием остаточного аустенита. Однако, самопроизвольно при нормальной температуре сталь не может перейти в более устойчивое состояние, так как для перестройки структуры требуется дополнительная энергия. Распад неустойчивой структуры возможен лишь при повышении температуры. Такая перестройка начинается начиная с небольшого нагревания до 1000 и заканчивается при достижении температурой т. А1 (то есть 7000). Условно процесс перестройки температуры можно разбить на три стадии: 1. При нагреве до 2000С. В этом интервале температур из М закалкивыделяется избыток углерода в виде мельчайших выделений цементита Fe3C. В результат внутреннее напряжение в мартенсите уменьшается, и такой мартенсит называют мартенситом отпуска.Выделение из мартенсита цементита сопровождается уменьшением объема стали. 2. 200-4000С. При этих температурах продолжается превращение мартенсита закалки в мартенсит отпуска при уменьшении объема и одновременно с этим остаточный аустенит, который сохранился в закаленной стали, превращается в мартенсит закалки. Этот процесс идет с увеличением объема стали. Если остаточного аустенита много, то это увеличение объема можно компенсировать. Изменение объема связано с переходом мартенсита закалки в мартенсит отпуска. 3. 400-6000С. При этих температурах мартенсит отпуска распадается на смесь феррита и цементита Мотп®Ф+Ц. Чем выше температура, тем больше размер образовавшихся зерен феррита и цементита. Кроме того, меняется и форма цементитных включений. В отличии от пластинчатой формы, которая образуется при распаде аустенита в момент перехода его в перлит, при превращении мартенсита в перлит частицы цементита округлые, то есть сферические. В результате такого изменения структуры меняется вязкость стали. Чем мельче частицы цементита и чем они более круглые, тем выше вязкость. Размер округлых включений цементита зависит только от температуры, чем выше температура, тем включений больше, но одновременно с увеличением размера включений уменьшается и твердость и вязкость стали.
Практика термообработки сталей. При изготовлении деталей для изменения структуры и свойств стали применяют различные операции термообработки. К ним относят отжиг, закалку и отпуск.
Отжиг сталей. Отжиг– это термообработка, направленная на уменьшение прочности и твердости и повышение пластичности стали. Температура отжига определяется его назначением и зависит от содержания углерода. Для доэвтектоидной и заэвтектоидной сталей применяют различные виды отжига. Это объясняется разным назначением сталей.
Отжиг доэвтектоидной стали. Для доэвтектоидной стали можно применять как отжиг 1 рода, так и отжиг 2 рода. Из отжигов 1 рода для стали применяют отжиг на рекристаллизацию (применяют для малоуглеродистой стали, то есть содержании с менее от 0,25%). Эта сталь предназначена для холодной штамповки. При деформации в ней возникает упрочнение, то есть наклеп, который снимается отжигом на рекристаллизацию. 1. Рекристаллизационный отжиг проходит при температурах 6800С, время отжига 4-12 часов. 2. Отжиг на снятие внутренних напряжений. Этот вид отжига применяется для устранения внутренних напряжений, которые возникают в процессах резки, сварки, шлифования. Снятие внутренних напряжений происходит за счет процессов возврата. Продолжительность и температура такого отжига зависит от вида напряжений, от размеров деталей, химического состава стали (до 6000С), 2-12 часов. Большинство конструкционных деталей изготавливается из средне- и высокоуглеродистых сталей. Температура рекристаллизационного отжига таких сталей практически совпадает с температурой т. А1, поэтому в большинстве случаев для изменения структуры и свойств стали применяют отжиг 2 рода. Для доэвтектоидной стали в основном применяют полный отжиг. При таком отжиге происходит полная смена структуры стали, что позволяет устранить все дефекты, вызванные холодной деформацией, сваркой, резкой и так далее. Отжиг 2 рода для доэвтектоидной стали принято разделять на 4 вида:
Полный отжиг Производится с нагревом стали до температуры, превышающей точку А3с последующим медленным охлаждением вместе с речью. Медленное охлаждение вызывает полное равновесное превращение А®Ф + П. В результате получается максимально возможная пластичность, минимальная твердость и прочность и полное снятие внутренних напряжений. Если внутренние направления не имеют значения то после охлаждения с печью до 5000, дальнейшее охлаждение можно вести на воздухе. Полный отжиг применяют для устранения дефектов структуры, вызванных литьем, холодной деформацией, сваркой. Основной недостаток полного отжига – это его большая продолжительность, возможная неравномерность зеренного строения в центре и на поверхности крупногабаритных изделий, вызванная неодинаковой скоростью охлаждения. Изотермический отжиг. При изотермическом отжиге, заготовки, нагреваются до температуры выше т. А3быстро охлаждают на 100º С ниже точки А1, затем помещают в печь и при этой температуре выдерживают до полного превращения А®П. Так как превращение А®П идет при постоянной температуре и во всем объеме детали одновременно, такой способ отжига позволяет получить равномерную структуру по всему объему детали. Такой вид отжига применяется для крупногабаритных деталей ответственного назначения. Нормализация. Нормализацией называют отжиг с охлаждением детали на свободном воздухе. Условия охлаждения при нормализации позволяют получить более мелкое зерно, по сравнению с обычным отжигом. Уменьшение размера зерна вызывает увеличение прочности и твердости, при некотором снижении пластичности. Особенно это заметно на деталях, содержащих 0,3-0,6%С. Прочность и твердость таких сталей при нормализации имеет промежуточное значение между твердостью, полученной после отжига и твердостью, полученной при закалке, поэтому нормализация таких сталей является основным видом термообработки. Для малоуглеродистых сталей свойства после отжига и после нормализации практически совпадают, поэтому для малоуглеродистых сталей отжиг всегда заменяют на нормализацию. Нормализацию применяют и как окончательный вид термообработки и как промежуточный, например, между операциями холодной деформации для снятия наклепа или перед обработкой резанием для уменьшения твердости. Патентирование. Это особый вид отжига, который применяется для изготовления высокопрочной проволоки. Низкая температура превращения позволяет получить равномерную мелкую структуру. Такая структура называется троостит. После отжига сталь подвергают холодной деформации, волочению. В результате мелкой структуры и наклепа позволяют получить металл прочностью 2000-5000 Мпа. Отжиг заэвтектоидной стали.
1. Отжиг на сфероинизациюявляется неполным, поэтому при нагреве полного растворения цементитных включений не происходит. В процессе охлаждения оставшиеся включений цементита при распаде аустенита. В результате форма включений цементита меняется. Из бывшей пластинчатой она превращается в округлую сферическую. Поэтому такой отжиг называется сфероинизирующим. Изменение формы включений цементита позволяет повышать вязкость стали; облегчает процесс обработки резанием. Такая структура стали является идеальной перед закалкой. Для ускорения процесса сфероинизации иногда применяют отжиг с циклированием температуры на 20-30º С выше или ниже точки А1. Такой отжиг называют маятниковым. При нагреве стали происходит растворение краев цементитных пластин, при охлаждении же цементит выделяется равномерно по всей поверхности. Поэтому при таком виде отжиге процессе сфероинизации идет быстрее. Нормализация. Применяется для заэвтектоидной стали с целью устранения выделений цементита по границам зерен. Сплошная цементитная сетка крайне нежелательна. Она образуется при медленном охлаждении с высоких температур. Нагрев сталей до температур выше точки Аст приводит к растворению цементитной сетки по границам зерен. При ускоренном охлаждении на воздухе вторичный цементит выделяется в виде отдельных включений, не образуя сплошной сетки по границам зерен. В результате вязкость стали восстанавливаются. Закалка сталей. Закалкой называют термообработку, включающую в себя нагрев сталей до температур выше критических и быстрое, резкое охлаждение, с целью получения высокой прочности и твердости. Различают закалки объемную и поверхностную. При объемной закалке нагревают и охлаждают весь объем детали, при поверхностной – только поверхность. В зависимости от температуры нагрева закалка бывает полной и неполной. При полной закалке сталь нагревают выше точки А3. Полная закалка применяется для доэвтектоидной стали. В этом случае при нагреве выше точки А3сталь имеет полностью аустенитную структуру и после резкого охлаждения имеет полностью мартенситную структуру. При неполной закалке полного превращения не будет, и оставшийся в структуре феррит не даст получить высокой твердости и прочности. Поэтому в доэвтектоидной стали неполную закалку не применяют. Для заэвтектоидной стали применяют только неполную закалку. В этом случае вторичный цементит, который сохраняется в стали, дополнительно повышает твердость закаленных сталей. Если же применить полную закалку, то вторичный цементит растворяется в аустените. Это сопровождается резким увеличением зерна. После охлаждения в такой стали будет большое количество остаточного аустенита. Это дополнительно уменьшит твердость стали, поэтому для заэвтектоидной стали полная закалка никогда не применяется. Выдержка при закалке стали должна быть такой, чтобы успели пройти все структурные и фазовые превращения. Однако она не должна быть чрезмерной, чтобы не вызвать роста аустенитного зерна. Обычно ориентировочно выдержку детали принимают из расчета 1 минуту на 1 миллиметр толщины для нагрева и + 1 минута на 1 миллиметр толщины для выравнивания температуры по сечению и прохождения всех структурах и фазовых превращений. Охлаждение при закалке должно быть резким, для того, чтобы не допустить образования перлита, но в то же время – максимально медленным, чтобы уменьшить уровень внутренних напряжений, образующихся в деталях при резком охлаждении. Внутренние напряжения должны быть термические и структурные. Термические возникают из-за неодинаковой скорости охлаждения поверхности и центров массивных деталей, а также при неодинаковой скорости охлаждения тонких и толстых сечений детали. Структурные напряжения возникают из-за объемного эффекта (v↑) при переходе А→ М. В зависимости от содержания углерода этот объемных эффект достигает 5-6%. Уровень внутренних напряжений может быть настолько велик, что в результате происходит искажение формы детали или ее растрескивание. Охлаждение при закалке может вестись в предельных средах (вода, масло минеральное, водо-воздушные смеси). От скорости охлаждения зависит структура, которая в стали после закалки. Если скорость недостаточная, то получает перлитная структура. Они отличаются друг от друга различным размером частиц перлита и цементита. Если скорость охлаждения при закалке достаточно велика, для того, чтобы не образовался перлит, но слишком мала для образования мартенсита в сталях, появится промежуточная структура – бейнит.Внешне она имеет игольчатую структуру как мартенсит, но сами иглы представляют собой феррит, внутри которого выделяется мельчайшие частицы цемента. Если скорость охлаждается стали превышает критическую скорость, то образуется в мартенсит, обеспечивающий максимальную твердость в закаленной стали. Наиболее эффективное охлаждение обеспечивает вода, но её недостаток – слишком быстрое охлаждение в интервале мартенситного превращения. В результате возникают большие внутренние напряжения. Минеральное масло наоборот дает малую скорость охлаждения в области мартенситного превращения, но не достаточно быструю в области перлитного превращения. Способы закалки. Для того, чтобы обеспечить закалку сталей на мартенсит необходимо быстро охлаждать её в области перлитного превращения. Но если с такой же скоростью охлаждать её и дальше в области мартенситного превращения, то в детали возникают резкие закалочные напряжения. Поэтому желательно проводить охлаждение в области мартенситного превращения по возможности медленнее, но среды с переменной скоростью охлаждения не существует и поэтому для разных деталей применяют различные способы охлаждения, чтобы получить закаленное состояние с минимум уровнем внутренних напряжений. 1. Охлаждение в одном охладителе(воде, масле). Недостаток - очень резкие внутренние напряжения. Чтобы их уменьшить применяют второй способ закалки. 2. Закалка в двух средах(из воды в масло). По этому способу в начале деталь охлаждают в воде, до температуры ниже перлитного превращения, а затем перебрасывают до окончательного охлаждения в масло. Этот способ сложен и требует высокой квалификации рабочих, от которых требуется выдерживать деталь определенное количество времени в воде. Если выдержка будет мала, то при дальнейшем охлаждении попадаем в перлитное превращение, и закалки не будет, а если выдержка слишком большая, то в деталях возникают большие внутренние напряжения. 3. Ступенчатая закалка.При ступенчатой закалке нагретую деталь охлаждают быстро до заданной температуре в специально горячей среде, в качестве которой используются расплавы металлов или солей. Время выдержки в горячей среде определяются маркой стали и может быть четко определено по секундомеру, после этого идет окончание охлаждение в воде или масле. Выдержка в горячей среде позволяет выровнять температуру по всему сечению деталей, поэтому при окончательном охлаждении в воде, или масле превращение аустенита в мартенсит идет одновременно по всему объему детали, что позволяет резко снизить уровень внутренних напряжений. Такой способ закалки применяют для крупногабаритных деталей сложной формы, чтобы до минимума снизить искажение формы. 4. Изотермическая закалка.Этот способ применяется для крупногабаритных деталей, которые нельзя охлаждать очень быстро, из-за опасности разрушения. При изотермической закалке нагретые детали помещают в горячую среду, нагретую до заданной температурой 350-400 градусов, в которой выдерживают до полного прохождения превращения аустенита в троостит или бейнит. После полного превращения деталь обычно охлаждается на воздухе. Дополнительного отпуска после такой закалке не требуется. Температура окружающей среды выбирается термообработкой, чтобы получить в детали структуру, обеспечивающую заданную твердость. 5. Закалка с обработкой холодом.При закалке высокоуглеродистых сталей, содержащих никель, молибден, вольфрам даже после полного охлаждения до нормальной температуры превращение аустенита в мартенсит проходит не полностью. Остаточный аустенит имеет невысокую твердость и поэтому твердость детали после закалки будет недостаточной. Для устранения остаточного аустенита закаленные детали дополнительно охлаждают в области отрицательных температур 70-80 градусов, парами углекислоты или жидкого азота. Дополнительное охлаждение вызывает переход остаточного аустенита в мартенсит и твердость закаленной стали повышается. 6. Закалка с самоотпуском.Этот способ закалки применятся для деталей, которые должны иметь различную твердость в различных местах. Чтобы получить переменную твердость, нагретую деталь помещают в охлажденную среду только рабочей поверхностью, оставляя хвостовик над поверхностью охлаждающей среды. После полного охлаждения поверхности деталь извлекают из охлаждающей среды и за счет тепла, сохранившегося в хвостовой части, происходит разогрев рабочей поверхности и ее отпуск. Температуру разогрева поверхности контролируют по цветам побежалости.
Популярное: Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1024)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |