Мегаобучалка Главная | О нас | Обратная связь


Уравнение теплопроводности. Интеграл Пуассона



2015-12-07 1018 Обсуждений (0)
Уравнение теплопроводности. Интеграл Пуассона 0.00 из 5.00 0 оценок




 

Температуру физического тела в произвольной точке с координатами (x, y, z) в момент времени t можно представить в виде функции:

Составим дифференциальное уравнение:

Выражение называется оператором Лапласа.

Тогда составленное нами дифференциальное уравнение принимает вид:

и называется уравнением теплопроводности в пространстве.

В качестве частных случаев рассматривают:

- уравнение теплопроводности в стержне,

- уравнение теплопроводности на плоскости.

В случае рассмотрения уравнения теплопроводности в стержне искомая функция u(x, t) должна удовлетворять записанному выше дифференциальному уравнению, начальному условию и граничным условиям .

 

В результате решения дифференциального уравнения методом Фурье получим:

 

Отметим, что распространение тепла в теле называется стационарным, если функция u не зависит от времени t.

 

Интеграл Пуассона

Интегра́л Пуассо́на позволяет получить решение задачи Дирихле для уравнения Лапласа в шаре.

Пусть для гармонической в шаре функции u(r, φ) поставлено условие равенства на границе функции u0: u(R, φ) = u0(φ), при этом функции принадлежат следующим классам гладкости: , где ∂D — граница шара D, а — его замыкание. Тогда решение такой задачи Дирихле представимо в виде интеграла Пуассона:

где ωn — площадь единичной сферы, а n — размерность пространства.

Вывод формулы в двумерном случае

Известно, что функция

является решением задачи Дирихле для уравнения Лапласа в круге. Преобразуем это выражение с учётом выражений для коэффициентов Фурье:

Последнюю сумму можно вычислить при 0≤r<R:

Таким образом, в преобразованном виде интеграл Пуассона для круга приобретает вид:

Уравнение Эйлера для функционала Лагранжа

Пусть задан функционал

с подынтегральной функцией , обладающей непрерывными первыми частными производными и называемой функцией Лагранжа или лагранжианом, где через f' обозначена первая производная f по x. Если этот функционал достигает экстремума на некоторой функции , то для неё должно выполняться обыкновенное дифференциальное уравнение

которое называется уравнением Эйлера — Лагранжа.

Доказательство

Вывод одномерного уравнения Эйлера — Лагранжа является одним из классических доказательств в математике. Оно основывается на основной лемме вариационного исчисления.

Мы хотим найти такую функцию , которая удовлетворяет граничным условиям , и доставляет экстремум функционалу

Предположим, что имеет непрерывные первые производные. Достаточно и более слабых условий, но доказательство для общего случая более сложно.

Если даёт экстремум функционалу и удовлетворяет граничным условиям, то любое слабое возмущение , которое сохраняет граничные условия, должно увеличивать значение (если минимизирует его) или уменьшать (если максимизирует).

Пусть — любая дифференцируемая функция, удовлетворяющая условию . Определим

Поскольку даёт экстремум для , то , то есть

Интегрируя по частям второе слагаемое, находим, что

 

Используя граничные условия на , получим

Отсюда, так как — любая, следует уравнение Эйлера — Лагранжа:



2015-12-07 1018 Обсуждений (0)
Уравнение теплопроводности. Интеграл Пуассона 0.00 из 5.00 0 оценок









Обсуждение в статье: Уравнение теплопроводности. Интеграл Пуассона

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1018)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)