Уравнения с разделяющимися переменными
Определение. Дифференциальное уравнение
Такое уравнение можно представить также в виде:
Перейдем к новым обозначениям Получаем:
После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными. Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.
Однородные уравнения. Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:
Определение. Дифференциальное уравнение вида Любое уравнение вида Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными. Рассмотрим однородное уравнение Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:
Т.к. параметр t вообще говоря произвольный, предположим, что
Правая часть полученного равенства зависит фактически только от одного аргумента
Исходное дифференциальное уравнение таким образом можно записать в виде:
Далее заменяем y = ux,
таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.
Далее, заменив вспомогательную функцию u на ее выражение через х и у и найдя интегралы, получим общее решение однородного дифференциального уравнения. Уравнения, приводящиеся к однородным. Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным. Это уравнения вида Если определитель
где a и b - решения системы уравнений Линейные уравнения. Определение. Дифференциальное уравнение называется линейным относительно неизвестной функции и ее производной, если оно может быть записано в виде:
при этом, если правая часть Q(x) равна нулю, то такое уравнение называется линейным однороднымдифференциальным уравнением, если правая часть Q(x) не равна нулю, то такое уравнение называется линейным неоднороднымдифференциальным уравнением. P(x) и Q(x)- функции непрерывные на некотором промежутке a < x < b.
25.Дифференциальные уравнения высших порядков. Теорема Коши существования и единственности решения. Задача Коши.
В некоторых случаях это уравнение можно разрешить относительно y(n):
Так же как и уравнение первого порядка, уравнения высших порядков имеют бесконечное количество решений. Определение. Решение Определение. Нахождение решения уравнения Теорема Коши. (Теорема о необходимых и достаточных условиях существования решения задачи Коши). Если функция (n-1) –й переменных вида Дифференциальные уравнения высших порядков, решение которых может быть найдено аналитически, можно разделить на несколько основных типов. Рассмотрим подробнее методы нахождения решений этих уравнений. 26.Дифференциальные уравнения, допускающие понижения порядка. Понижение порядка дифференциального уравнения – основной метод решения уравнений высших порядков. Этот метод дает возможность сравнительно легко находить решение, однако, он применим далеко не ко всем уравнениям. Рассмотрим случаи, когда возможно понижение порядка.
27Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Определение. Линейным дифференциальным уравнением n – го порядка называется любое уравнение первой степени относительно функции у и ее производных
где p0, p1, …,pn – функции от х или постоянные величины, причем p0 ¹ 0. Левую часть этого уравнения обозначим L(y).
Определение. Если f(x) = 0, то уравнение L(y) = 0 называется линейным однороднымуравнением, если f(x) ¹ 0, то уравнение L(y) = f(x) называется линейным неоднородным уравнением, если все коэффициенты p0, p1, p2, … pn – постоянные числа, то уравнение L(y) = f(x) называется линейным дифференциальным уравнением высшего порядка с постоянными коэффициентами. Отметим одно важное свойство линейных уравнений высших порядков, которое отличает их от нелинейных. Для нелинейных уравнений частный интеграл находится из общего, а для линейных – наоборот, общий интеграл составляется из частных. Линейные уравнения представляют собой наиболее изученный класс дифференциальных уравнений высших порядков. Это объясняется сравнительной простотой нахождения решения. Если при решении каких – либо практических задач требуется решить нелинейное дифференциальное уравнение, то часто применяются приближенные методы, позволяющие заменить такое уравнение “близким” к нему линейным. Рассмотрим способы интегрирования некоторых типов линейных дифференциальных уравнений высших порядков.
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Почему стероиды повышают давление?: Основных причин три... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (601)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |