Знакопеременные ряды. Абсолютная и условная сходимость
Пусть и ряд сходятся одновременно, то А также и при этом говорят, что ряд A сходится абсолютно. Если сходится, – расходится, то А сходится условно Абсолютная и условная сходимость рядов. Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков). (1) и ряд, составленный из абсолютных величин членов ряда (1): (2) Теорема. Из сходимости ряда (2) следует сходимость ряда (1). Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого e>0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство: По свойству абсолютных величин: То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1). Определение. Ряд называется абсолютно сходящимся, если сходится ряд . Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают. Определение. Ряд называется условно сходящимся, если он сходится, а ряд расходится. Признаки Даламбера и Коши для знакопеременных рядов. Пусть - знакопеременный ряд. Признак Даламбера. Если существует предел , то при r<1 ряд будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда. Признак Коши. Если существует предел , то при r<1 ряд будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда. Свойства абсолютно сходящихся рядов. 1) Теорема. Для абсолютной сходимости ряда необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами. Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами. 2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда. 3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму. Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд. 4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда. 5) Если ряды и сходятся абсолютно и их суммы равны соответственно S и s, то ряд, составленный из всех произведений вида взятых в каком угодно порядке, также сходится абсолютно и его сумма равна S×s - произведению сумм перемножаемых рядов. Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (938)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |