Мегаобучалка Главная | О нас | Обратная связь


Правило исследования функции на непрерывность и на разрыв



2015-12-07 1176 Обсуждений (0)
Правило исследования функции на непрерывность и на разрыв 0.00 из 5.00 0 оценок




При исследовании графика функции на разрыв всё зависит от того какое из условий (6.6)

нарушается.

I. Если нарушено условие A в (6.6), то абсциссу можно назвать точкой неопределённости;

II. Пусть условие А выполнено, но нарушено условие В. Тогда абсцисса это точка

бесконечного разрыва графика функции;

Ш. Если условия А и В выполнены, а условие С нарушено, то абсцисса является

точкой конечного разрыва графика функции; Такой разрыв графика называется

скачком;

IV. Пусть условия А, В и С выполнены, но нарушено условие D. Тогда точка это

точка устранимого разрыва графика функции;

 

 

Иногда разрыв- скачок называют разрывом первого рода. Бесконечный разрыв называют разрывом второго рода.

 

 

Рис.3а рис.3в

 

На рис.3а у графика в точке бесконечный разрыв. На рис.3в у графика в точке разрыв -скачок.

 

Пример 6.2. Исследовать на непрерывность данные функции

Решение.1). Данная функция является элементарной функцией (см. опр.1.9).

Из теоремы 6.6 следует, что она непрерывна всюду в области своего задания . Используя правило, исследуем её на непрерывность в точке

Вычисляем левый предел . При величина является отрицательной

б.м. Следовательно, по теореме 6.3 величина будет отрицательной б.б. при .

Откуда .

 

Вычисляем правый предел . При величина является положительной

б.м. Следовательно, по теореме 6.2 величина будет положительной б.б. при .

Откуда .

Вывод. Функция непрерывна всюду кроме точки . В точке функция терпит разрыв второго рода (бесконечный разрыв).

 

2). Данная функция является элементарной функцией (см. опр.1.9).

Из теоремы 6.6 следует, что она непрерывна всюду в области своего задания . Используя правило, исследуем её на непрерывность в точке .

Вычисляем левый предел . При величина является положительной б.м. Следовательно, по теореме 6.2 величина будет положительной б.б. при . Откуда .

 

Вычисляем правый предел . При величина является отрицательной б.м. Следовательно, по теореме 6.3 величина будет отрицательной б.б. при . Откуда .

Вывод. Функция непрерывна всюду кроме точки . В точке функция терпит разрыв второго рода (бесконечный разрыв).

 

Пример 6.3. Исследовать данные функции на непрерывность и построить их графики

Решение. 1) На интервалах функция непрерывна, так как на каждом она является элементарной функцией. Исследуем функцию в пограничных точках и . Для точки имеем

Согласно правилу в точке разрыв первого рода. Разрыв-скачок.

Рис.4

 

Для точки имеем

Значение функции в точке 3равно . Следовательно, в точке функция

непрерывна. График функции приведён на рис.4.

 

2) На интервалах функция непрерывна, так как на каждом она является элементарной функцией. Исследуем функцию в точках и .

Для точки имеем

Согласно правилу в точке разрыв первого рода. Разрыв-скачок.

 

Для точки имеем

Значение функции в точке 2 равно . Следовательно, в точке функция

терпит разрыв. Разрыв-скачок. График функции приведён на рис.5.

Рис.5

 



2015-12-07 1176 Обсуждений (0)
Правило исследования функции на непрерывность и на разрыв 0.00 из 5.00 0 оценок









Обсуждение в статье: Правило исследования функции на непрерывность и на разрыв

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1176)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)