Мегаобучалка Главная | О нас | Обратная связь


Система управления самолетом



2015-12-07 2303 Обсуждений (0)
Система управления самолетом 0.00 из 5.00 0 оценок




Аэродинамика самолета Боинг-737 (300 – 900)

 

Боинг 737 — самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Он является самым массово производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения. Несмотря на это, фирма Боинг не опубликовала общедоступного документа, отражающего аэродинамические особенности своего детища. В статье предпринимается попытка осветить данный вопрос по аналогии, как это делалось на всех советских самолетах. Чтобы описать аэродинамику самолёта по настоящему нужно иметь доступ к материалам лётных испытаний. Данная статья основана на открытых документах фирмы Боинг и материалах свободной печати.

Основной текст касается «классической» модификации (300-500), с дополнительной информацией по модификации NG (600-900).

 

Содержание

Особенности аэродинамической компоновки самолета Боинг-737

Система управления самолетом

Скорость полета

Расчёт центровки самолёта

Взлет самолета

Посадка самолета

Устойчивость и управляемость

Система автоматического управления

Полет самолета при несимметричной тяге

Отказобезопасность

Недостатки самолета

Особенности аэродинамической компоновки самолета Боинг-737

 

Геометрические характеристики крыла

 

“Classic”

Площадь крыла 1135 ft2 или 105.44м2.

Размах крыла 94’9’’ или 28.88 м (102’5’’ или 31.22 м с winglets)

Относительное удлинение крыла 9.16

Сужение крыла 0.24

Угол стреловидности 25 градусов

Средняя аэродинамическая хорда (САХ) 134,5 inches или 341,63 см

 

“NG” (Размах крыла 35.75 м с winglets)

 

 

Максимальное аэродинамическое качество самолета – 15.

 

Вертикальные законцовки крыла (winglets).

 

Законцовки представляют собой дополнительные профилированные поверхности, предназначенные для уменьшения концевого вихря крыла, благодаря чему уменьшается индуктивное сопротивление.

См. http://aviacom.ucoz.ru/Principleflight.doc стр.45

Законцовки могут устанавливаться по желанию заказчика и благодаря их установке улучшаются следующие качества самолета:

1. Взлетные характеристики. Особенно в аэропортах, где максимальный взлетный вес самолёта ограничен препятствиями и/или ограничениями по шумам, аэропортах с высокой температурой, большим превышением. Поскольку увеличение аэродинамического качества обеспечивает более крутой набор высоты после отрыва.
2. Продлевается жизнь двигателей и уменьшаются расходы на их обслуживание. Лучшие характеристики набора высоты позволяют уменьшать требуемый режим двигателей на взлете. Также улучшение аэродинамического качества уменьшает потребный режим двигателей в крейсерском полете (до 4%).
3. Экономия топлива. В крейсерском полете километровый расход топлива уменьшается на 6%. Соответственно на ту же дальность можно перевезти больше груза.
4. Самолет быстрее набирает крейсерский эшелон, где воздушное пространство менее загружено и есть возможность летать по спрямленным маршрутам.

 

Кроме очевидных достоинств законцовки имеют ряд недостатков:

1. Дополнительный вес 170-235 кг.

2. Усиливается чрезмерная поперечная устойчивость самолёта (см. раздел Устойчивость и управляемость), что приводит к дополнительным ограничениям бокового ветра на посадке.

3. За счет смещения центра масс крыла назад уменьшается критическая скорость флаттера крыла. (см. http://aviacom.ucoz.ru/Principleflight4.doc стр.17)

Это одна из возможных причин, приведших к необходимости ограничения угла выпуска интерцепторов-элеронов на V>320 узлов (Load Alleviation System).

4. Версия программного обеспечения FMC часто не учитывает изменения лётных характеристик после установки законцовок. Особенно эти несоответствия заметны в расчёте характеристик снижения.

 

Система управления самолетом

 

Управление самолетом делится на основное и вспомогательное.

Основное управление состоит из штурвала и педалей, механически соединенных с рулем высоты, рулем направления и элеронами.

К вспомогательному управлению относится механизация крыла и переставной стабилизатор.

Рулевые поверхности основного управления отклоняются гидроприводами, работу которых обеспечивают две независимые гидросистемы А и В. Любая из них обеспечивает нормальную работу основного управления. Рулевые приводы (гидроприводы) включены в проводку управления по необратимой схеме, т. е. аэродинамические нагрузки от рулевых поверхностей не передаются на органы управления. Усилия на штурвале и педалях создают загрузочные механизмы.

При отказе обоих гидросистем руль высоты и элероны отклоняются пилотами вручную, а руль направления отклоняется с помощью резервной гидросистемы (standby hydraulic system).

 

Поперечное управление

Поперечное управление осуществляется элеронами (ailerons) и интерцепторами-элеронами (flight spoilers). На «классике» 4 секции интерцепторов-элеронов (см. рисунок в разделе Механизация крыла).

На NG восемь секций интерцепторов-элеронов (см. рисунок ниже).

 

 

При наличии гидропитания на рулевых приводах элеронов поперечное управление работает следующим образом:

-перемещение штурвальных колес штурвалов (полное отклонение – ±107,5 градусов) по тросовой проводке передается на рулевые приводы элеронов и далее на элероны;

-кроме элеронов, рулевые приводы элеронов перемещают пружинную тягу (aileron spring cartridge), связанную с системой управления интерцепторами и таким образом приводят её в движение;

-движение пружинной тяги передается на устройство изменения передаточного коэффициента (spoiler ratio changer). Здесь управляющее воздействие уменьшается в зависимости от величины отклонения рукоятки управления интерцепторами (speed brake lever). Чем больше отклонены интерцепторы в режиме воздушных тормозов, тем меньше коэффициент передачи перемещения штурвалов по крену;

-далее перемещение передается на механизм управления интерцепторами (spoiler mixer), где оно суммируется с перемещением рукоятки управления интерцепторами. На крыле с поднятым элероном интерцепторы приподнимаются, а на другом крыле – приспускаются. Таким образом, одновременно выполняются функции воздушного тормоза и поперечного управления. Интерцепторы включаются в работу при повороте штурвального колеса более 10 градусов;

-также, вместе со всей системой, движется тросовая проводка от устройства изменения передаточного коэффициента до устройства зацепления (lost motion device) механизма связи штурвалов.

 

Устройство зацепления соединяет правый штурвал с тросовой проводкой управления интерцепторами при рассогласовании более 12 градусов (поворота штурвального колеса).

 

На штурвальном колесе нанесены деления (units), позволяющие контролировать величину отклонения. Каждый unit соответствует 6° отклонения штурвального колеса.

 

Конструкция рулевых приводов элеронов такова, что при отсутствии гидропитания они позволяют пилотам двигать тросовую проводку элеронов напрямую, используя корпус рулевого привода, как жесткую тягу. При этом в системе управления образуется зона нечувствительности (люфт) 3° по углу поворота колеса штурвала. При повороте колеса штурвала на угол более 12° придёт в движение тросовая проводка системы управления интерцепторами. Если при этом рулевые машины интерцепторов будут работать, то интерцепторы будут работать в помощь элеронам.

 

Эта же схема позволяет второму пилоту управлять самолётом по крену с помощью интерцепторов при заклинении штурвала командира или тросовой проводки элеронов. При этом ему необходимо приложить усилие порядка 80-120 фунтов (36-54 кг), чтобы преодолеть усилие предварительной затяжки пружины в механизме связи штурвалов (aileron transfer mechanism), отклонить штурвал более 12 градусов и тогда вступят в работу интерцепторы.

 

При заклинении правого штурвала или тросовой проводки интерцепторов командир имеет возможность управлять элеронами, преодолевая усилие пружины в механизме связи штурвалов.

 

В случае заклинения одного из элеронов на соответствующей качалке срезается срезная заклёпка. Оставшийся элерон продолжает отклоняться нормально.

 

Рулевой привод элеронов соединен тросовой проводкой с левой штурвальной колонкой через загрузочный механизм (aileron feel and centering unit). Данное устройство имитирует аэродинамическую нагрузку на элеронах, при работающем рулевом приводе, а также смещает положение нулевых усилий (механизм триммерного эффекта). Пользоваться механизмом триммерного эффекта элеронов можно только при отключенном автопилоте, поскольку автопилот управляет рулевым приводом напрямую, и будет пересиливать любые перемещения загрузочного механизма. Зато в момент отключения автопилота эти усилия сразу же передадутся на проводку управления, что приведет к неожидаемому кренению самолета. Для управления механизмом триммерного эффекта установлено два переключателя. Один из них определяет сторону смещения нейтрали, а второй включает питание электродвигателя. Триммирование произойдет только при нажатии на оба переключателя одновременно.

 

Для уменьшения усилий при ручном управлении (manual reversion) элероны имеют кинематические сервокомпенсаторы (tabs) и балансировочные панели (balance panel).

(см. http://aviacom.ucoz.ru/Principleflight3.doc стр.5)

 

Сервокомпенсаторы кинематически связаны с элеронами и отклоняются в противоположную отклонению элерона сторону. Это уменьшает шарнирный момент элерона и усилия на штурвале.

 

Балансировочные панели представляют собой панели соединяющие переднюю кромку элерона с задним лонжероном крыла с помощью шарнирных соединений. При отклонении элерона, например, вниз - на нижней поверхности крыла в зоне элерона возникает зона повышенного давления, а на верхней – разрежения. Этот перепад давления распространяется в зону между передней кромкой элерона и крылом и, воздействуя на балансировочную панель, уменьшает шарнирный момент элерона.

 

 

При отсутствии гидропитания механизм триммерного эффекта реального уменьшения усилий не обеспечивает. Триммировать усилия на рулевой колонке можно с помощью руля направления или, в крайнем случае, разнотягом двигателей.

 

Углы отклонения элеронов: вверх - 20°, вниз - 15°. Разница в углах отклонения вверх и вниз позволяет уменьшить вредный момент рыскания от элеронов

(см. http://aviacom.ucoz.ru/Principleflight3.doc стр.12).

 

На земле, при нейтральном колесе штурвала оба элерона отклонены вниз на 1°, задняя кромка элерона ниже поверхности крыла на 9 мм (зависание элеронов). В полёте, под действием зоны разряжения над крылом, проводка элеронов деформируется и элероны «всплывают» и становятся вровень с крылом, что уменьшает лобовое сопротивление.

 

 

Продольное управление

 

 

Управляющими поверхностями продольного управления являются: руль высоты, обеспеченный гидравлическим рулевым приводом, и стабилизатор, обеспеченный электрическим приводом. На задней кромке руля высоты установлен сервокомпесатор, предназначенный для облегчения отклонения руля пилотами при отказе гидропитания. Эту же роль выполняет выступ («рог») в концевой части руля высоты, в котором размещается балансировочный груз. В весовом отношении руль высоты полностью сбалансирован.

 

На «классике» штурвальные колонки командира и второго пилота в продольном канале соединены между собой жестко. На “NG” при заклинении одной из штурвальных колонок вторая сохранит свою подвижность.

 

 

На рисунке изображён узел, позволяющий раздельное движение штурвалов по тангажу. На командирской стороне расположена профилированная поверхность, к которой пружинами прижимается ролик, связанный со штурвалом второго пилота. Для преодоления сопротивления пружин пилоту, на чьей стороне не заклинило проводку управления, понадобится приложить дополнительное усилие 31 фунт (14 кг). Для дальнейшего отклонения штурвала придётся преодолевать сопротивление заклинившей половины тросовой проводки. Это резко ограничит диапазон возможного отклонения штурвала и увеличит потребные усилия. Так отклонения руля высоты на 4° потребуется усилие 100 фунтов (45 кг). Хотя эти усилия больше, чем при пилотировании самолёта без гидроусилителей (manual reversion), но управляемость, достаточная для выполнения посадки, сохраняется. Усилия снимать отклонением стабилизатора.

 

Штурвалы пилотов связаны с гидравлическими приводами руля высоты с помощью тросовой проводки, которая вращает трубу с качалками, которые в свою очередь перемещают управляющие пружинные тяги гидроприводов. Кроме пилотов на трубу управления рулём высоты воздействуют: рулевая машина автопилота (когда включена), раздвижная тяга электромеханизма Mach Trim System и загружатель штурвала (feel and centering unit).

Нормальное управление стабилизатором осуществляется от переключателей на штурвалах или автопилотом. Резервное управление стабилизатором - механическое с помощью колеса управления на центральном пульте управления.

 



2015-12-07 2303 Обсуждений (0)
Система управления самолетом 0.00 из 5.00 0 оценок









Обсуждение в статье: Система управления самолетом

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2303)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)