Контрольная работа №8. 8.1. Представить двойной интеграл в виде повторного с внешним интегрированием по x и
Вариант 23.
8.1. Представить двойной интеграл
8.2. Вычислить двойной интеграл по области D
8.3. Вычислить интеграл, перейдя от прямоугольных декартовых координат к полярным:
8.4. Вычислить объем тела, ограниченного заданными поверхностями
8.5. Используя формулу Грина, вычислить криволинейный интеграл по замкнутому контуру
8.6. Вычислить, используя формулу Стокса или непосредственно криволинейный интеграл 2-го рода и пояснить его физический смысл
8.7. Найти массу однородного тела, ограниченного данными поверхностями, считая его плотность
8.8. Выяснить, является ли векторное поле
Контрольная работа №8. Вариант 24.
8.1. Представить двойной интеграл 8.2. Вычислить двойной интеграл по области D 8.3. Вычислить интеграл, перейдя от прямоугольных декартовых координат к полярным: 8.4. Вычислить объем тела, ограниченного заданными поверхностями
8.5. Используя формулу Грина, вычислить криволинейный интеграл по замкнутому контуру 8.6. Вычислить, используя формулу Стокса или непосредственно криволинейный интеграл 2-го рода и пояснить его физический смысл
8.7. Найти массу однородного тела, ограниченного данными поверхностями, считая его плотность
8.8. Выяснить, является ли векторное поле
Контрольная работа №8. Вариант 25.
8.1. Представить двойной интеграл
8.2. Вычислить двойной интеграл по области D 8.3. Вычислить интеграл, перейдя от прямоугольных декартовых координат к полярным:
8.4. Вычислить объем тела, ограниченного заданными поверхностями
8.5. Используя формулу Грина, вычислить криволинейный интеграл по замкнутому контуру
8.6. Вычислить, используя формулу Стокса или непосредственно криволинейный интеграл 2-го рода и пояснить его физический смысл
8.7. Найти функцию
8.8. Выяснить, является ли векторное поле
Контрольная работа №8. Вариант 26.
8.1. Представить двойной интеграл
8.2. Вычислить двойной интеграл по области D
8.3. Вычислить интеграл, перейдя от прямоугольных декартовых координат к полярным: 8.4. Вычислить объем тела, ограниченного заданными поверхностями
8.5. Используя формулу Грина, вычислить криволинейный интеграл по замкнутому контуру
8.6. Вычислить, используя формулу Стокса или непосредственно криволинейный интеграл 2-го рода и пояснить его физический смысл
8.7. Найти массу однородного тела, ограниченного данными поверхностями, считая его плотность
8.8. Выяснить, является ли векторное поле
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1279)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |