Состав и обозначение деформируемых алюминиевых сплавов,
Лабораторная работа №5 ТЕРМИЧЕСКАЯ ОБРАБОТКА АЛЮМИНИЕВЫХ СПЛАВОВ
Цель работы
1. Изучить возможности упрочнения алюминиевых сплавов термической обработкой. 2. Изучить закономерности изменения структуры и механических свойств дуралюмина при термической обработке. 3. Ознакомиться с технологией термической обработки алюминиевых сплавов.
Материалы и оборудование для выполнения работы
1. Образцы из дуралюмина марки Д16. 2. Прибор измерения твердости по методу Бринелля ТШ-2. 3. Газовая горелка. 4. Бачок с водой.
Порядок выполнения работы 1. Изучить необходимый теоретический материал по теме занятия. Ознакомиться с механизмом упрочнения алюминиевых сплавов термической обработкой, с изменениями их структуры при закалке и старении. 2. Измерить твердость дуралюмина по Бринеллю в исходном (отожженном) состоянии. 3. Провести закалку образцов сплава и замерить твердость после нее. 4. Провести искусственное старение закаленного сплава при температурах 100, 200 и 300 °С с выдержкой при этих температурах в течение 20 минут, кроме этого провести старение сплавов при температуре 200 °С с выдержками 5 и 10 минут. 5. Измерить твердость образцов после старения. 6. По результатам измерений построить графические зависимости твердости от температуры и продолжительности старения. 7. Проанализировать и объяснить полученные результаты.
Основные положения
Термическая обработка алюминиевых сплавов в зависимости от производственной ситуации и эксплуатационных условий работы детали может преследовать различные цели: 1) Повышение пластичности и снижение твердости с целью улучшения обрабатываемости резанием и давлением. (Это реализуется при проведении смягчающей термической обработки – отжига.) 2) Повышение сопротивления деформации с целью повышения твердости и прочности. (Такая задача решается проведением упрочняющей термической обработки – закалкой и старением.) Поскольку указанные изменения свойств алюминиевых сплавов связаны с изменением их структуры, рассмотрим особенности ее формирования при различных видах термической обработки. С этой целью необходимо использовать диаграмму состояния, соответствующую данным сплавам. Дуралюмин представляет собой сплав алюминия с медью и магнием (а также с небольшим количеством марганца и кремния), поэтому рассмотрим диаграмму состояния сплавов системы алюминий-медь (рис. 1). Это диаграмма с ограниченной растворимостью компонентов в твердом состоянии.
Рис. 1. Диаграмма состояния алюминий – медь
В соответствии с приведенной диаграммой, при температурах выше линии ABC, называемой линией ликвидус, сплавы находятся в жидком состоянии; ниже этой линии протекают процессы кристаллизации. Растворимость меди в алюминии достигает 5,7 % при 548 °С. С понижением температуры растворимость меди быстро уменьшается до значений ≤ 0,2 % при 20 °С. В области, ограниченной линиями ADE0A, существует твердый раствор меди в алюминии (условное обозначение – α). В области правее линий CKM существует химическое соединение СuAl2. В области, ограниченной линиями ABDA, формируются из жидкости кристаллы твердого раствора меди в алюминии α, а в области, ограниченной линиями BCKB, – кристаллы химического соединения СuAl2. Оставшаяся часть жидкости при понижении температуры до 548 °С изменяется по составу и при достижении эвтектического состава (33 % меди) кристаллизуется в виде эвтектики. Эта эвтектика представляет собой механическую смесь кристаллов твердого раствора α и СuAl2. Соединение СuАl2 также может изменяться по составу, о чем свидетельствует форма области в правой части диаграммы (ограниченная слева линиями СКМ). Линия DE на диаграмме показывает предельную растворимость меди в твердом растворе α в зависимости от температуры. С понижением температуры растворимость меди уменьшается с 5,7 % (точка D при 548 °С) до ≤0,2 % (точка Е при 20 °С). Поэтому при охлаждении доэвтектических сплавов ниже линий ED и DB из твердого раствора α выделяются избыточные атомы меди с образованием частиц СuАl2. Широкое применение в технике получили деформируемые алюминиевые сплавы – дуралюмины. Это сплавы с содержанием 3-5 % меди в алюминии. В равновесном (отожженном) состоянии согласно диаграмме (см. рис. 1) структура дуралюмина состоит из зерен твердого раствора меди в алюминии α и частиц соединения СuАl2 (см. рис. 2, а). При этом частицы СuАl2 крупные. Такая структура обеспечивает сплаву хорошую пластичность (d = 18–20 %) при относительно невысоких значениях прочности (sв = 200–220 МПа) и твердости. Если сплав алюминия с 4 % меди, со структурой, показанной на рис. 2, а, нагреть до температур выше линии DE, но ниже AD, то частицы СuАl2 начнут диссоциировать. Атомы меди и алюминия перейдут в твердый раствор α. Когда этот процесс завершится, вся медь (в данном случае 4 %) будет находиться в твердом растворе, и структура станет однофазной, как показано на рис. 2, б. Если затем сплав быстро охладить, то медь не успеет выделиться из твердого раствора и сохранится в нем после охлаждения. В результате такой обработки сформируется твердый раствор α¢, пересыщенный медью (см. рис. 2, в), так как согласно диаграмме состояния при комнатной температуре в этом растворе может содержаться не более 0,2 % меди. В данном случае в твердом растворе α¢ будет содержаться 4 % меди.
Рис. 2. Изменения микроструктуры дуралюмина при термической обработке
Такой процесс получения пересыщенного твердого раствора α¢ путем нагрева сплава до температур выше линии DE на диаграмме (в однофазную область), выдержки и последующего быстрого охлаждения называется закалкой. В результате закалки формируется пересыщенный твердый раствор замещения. Упрочнение при этом происходит только за счет искажений кристаллической решетки, обусловленных разными размерами атомов алюминия и меди. Торможение дислокаций за счет этих искажений невелико. Поэтому после закалки значительного упрочнения дуралюмина не происходит – его прочность составляет sВ = 250–270 МПа, однако пластичность возрастает до d = 20–24 %, что позволяет пластически деформировать сплав в этом состоянии. Для более эффективного упрочнения алюминиевых сплавов их необходимо после закалки подвергать старению . Старение – длительная выдержка (от 4 до 6 суток) при комнатной температуре или более короткая выдержка (несколько часов или несколько десятков минут, в зависимости от марки сплава) при повышенной температуре (100–180 °С). В первом случае старение называют естественным, а во втором – искусственным. В процессе старения происходят следующие изменения в структуре закаленного сплава. Пересыщенный твердый раствор α¢ в закаленном сплаве – структура неравновесная и неустойчивая, поэтому при последующей выдержке сплава в течение определенного времени (при комнатной или повышенной температурах) в этом твердом растворе происходит диффузионное перераспределение атомов меди. В результате в отдельных участках сплава сначала образуются обогащенные медью зоны. Размер обогащенных медью зон на начальной стадии старения составляет: толщина 5–10 Å, диаметр 40–100 Å. Затем они растут до толщин 40 Å и диаметра ≥ 300 Å. Постепенно в этих зонах при возрастании концентрации меди формируются дисперсные (очень мелкие) частицы химического соединения СuАl2 с кристаллической решеткой, отличной от гранецентрированной решетки твердого раствора α (см. рис. 2, г). Формирование в структуре сплава зон с высокой концентрацией меди и дисперсных частиц химического соединения СuАl2 является сильным препятствием для движения дислокаций при пластической деформации и приводит к значительному упрочнению материала (sВ = 400–650 МПа), при незначительном снижении пластичности (d = 10–18 %). При увеличении температуры и продолжительности искусственного старения идёт процесс интенсивной коагуляции (объединения) дисперсных частиц. При этом количество их уменьшается, а расстояние между ними ‑ увеличивается, что облегчает прохождение дислокаций между частицами и ведёт к снижению прочности сплава. Поэтому для каждого сплава необходимо выбирать оптимальный режим старения, который должен обеспечивать сохранение в структуре дисперсной упрочняющей фазы СuАl2, состоящей из максимального количества частиц минимально размера. Такой механизм упрочнения характерен для всех алюминиевых сплавов, а тип образующегося химического соединения зависит от состава конкретного сплава.
Состав и обозначение деформируемых алюминиевых сплавов,
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (676)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |