Мегаобучалка Главная | О нас | Обратная связь


Последовательный компенсационный стабилизатор с применением операционного усилителя



2015-12-15 2366 Обсуждений (0)
Последовательный компенсационный стабилизатор с применением операционного усилителя 0.00 из 5.00 0 оценок




Рис. 4. Последовательный компенсационный стабилизатор с применением операционного усилителя

 

Часть выходного напряжения Uout, снимаемая с потенциометра R2, сравнивается с опорным напряжением Uz на стабилитроне D1. Разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.

Опорное напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон, и равно напряжению стабилизации стабилитрона. Для повышения его стабильности при изменениях Uin, вместо резистора RV применяется источник тока.

В данном стабилизаторе, операционный усилитель фактически включён по схеме неинвертирующего усилителя (с эмиттерным повторителем, для увеличения выходного тока). Соотношение резисторов в цепи обратной связи задают его коэффициент усиления, который определяет, во сколько раз выходное напряжение будет выше входного (то есть опорного, поданного на неинвертирующий вход ОУ). Поскольку коэффициент усиления неинвертирующего усилителя всегда больше единицы, величина опорного напряжения Uz (напряжение стабилизации стабилитрона) должна быть выбрана меньше, чем Uout.

Нестабильность выходного напряжения такого стабилизатора практически полностью определяется нестабильностью опорного напряжения, за счёт большого коэффициента петлевого усиления современных ОУ (Gopenloop = 105 ÷ 106).

Для исключения влияния нестабильности входного напряжения на режим работы самого ОУ, он может запитываться стабилизированным напряжением (от дополнительных параметрических стабилизаторов на стабилитроне).


Источники опорного напряжения

В любой схеме стабилизатора компенсационного типа требуется опорное напряжение, с которым сравнивается величина выходного напряжения. Стабильность выходного напряжения стабилизатора не может быть выше стабильности его источника опорного напряжения. Источники опорного напряжения (ИОН) широко применяются также в качестве эталонной меры в аналого-цифровых и цифроаналоговых преобразователях, а также в разного рода пороговых устройствах.

Основное назначение ИОН — создавать образцовое напряжение, которое могло бы быть использовано электронными устройствами преобразования информации в качестве меры, эталона.

 

ИОН на стабилитронах

Простейший метод получения опорного напряжения состоит в том, что нестабилизированное входное напряжение прикладывают через токоограничивающий резистор к стабилитрону, который играет роль так называемого параметрического стабилизатора, чей основной параметр — напряжение пробоя обратносмещенного/ья-перехода (Рис. 5а.).

Полупроводниковый стабилитрон, представляющий собой разновидность диода обладает характерной вольтамперной характеристикой (Рис. 6).__

 

Рис. 5.Схемы ИОН на стабилитронах: а — параметрический ИОН, б — ИОН компенсационного типа

 

 

Рис. 6.Вольтамперная характеристика стабилитрона

 

При определенном обратном напряжении происходит пробой/?-п-перехода, причем вследствие конструктивных и технологических особенностей этот пробой не приводит к выходу прибора из строя. Участок вольтамперной характеристики, соответствующий режиму пробоя, расположен почти вертикально, так что при изменении тока через стабилитрон напряжение на нем меняется мало.

Качество стабилизации оценивается коэффициентом

Кст = VIN / VREF>

который называется коэффициентом стабилизации. Для схемы на Рис.5а коэффициен стабилизации

КСТ = 1 + R / r ~ R / r ст

и составляет обычно от 10 до 100. Здесь гст — дифференциальное (динамическое) сопротивление стабилитрона. Оно приблизительно обратно пропорционально току, протекающему через стабилитрон, поэтому при заданном входном напряжении увеличением сопротивления резистора R невозможно добиться повышения коэффициента стабилизации. Важным фактором для выбора стабилитрона является величина шумовой составляющей напряжения стабилизации, которая сильно возрастает при малых величинах тока. Недостатком схемы на Рис. 5а является относительно высокое выходное сопротивление (десятки Ом), которое также возрастает при уменьшении тока через стабилитрон. Другим недостатком является большой разброс напряжений стабилизации, который даже для прецизионных стабилитронов достигает 5% от номинального значения.

 

Существенного повышения коэффициента стабилизации можно достичь, если токоограничивающий резистор заменить источником стабильного тока, например на полевом транзисторе (Рис. 7).

В этом случае может превысить 1000.

Рис. 7. Источник опорного напряжения с полевым транзистором

 

Можно заметно улучшить характеристики источника опорного напряжения, если использовать в его составе операционный усилитель (Рис.56), т. е. выполнить ИОН по схеме стабилизатора напряжения компенсационного типа, Коэффициент стабилизации в такой схеме определяется главным образом коэффициентом подавления нестабильности питания А^пп в используемом ОУ и может достигать величины порядка 10000. Выходное сопротивление этой схемы составляет десятые доли Ом. Поскольку напряжения на входах ОУ практически равны, выходное напряжение ИОН

 

VOUT = VREF (1 + R2 /R1)

 

В схеме на Рис. 56 выходное напряжение ИОН не может быть меньше напряжения стабилизации стабилитрона. Если требуется более низкое напряжение, то между стабилитроном и неинвертирующим входом усилителя включается резистивный делитель. Так устроен, например, источник опорного напряжения AD586. Применение ОУ позволяет также путем подгонки соотношения сопротивлений резисторов R2 /R1 достичь высокой точности установки опорного напряжения.

В итоге, колебания выходного напряжения ИОН, выполненного по схеме на Рис. 5.б, при реальных изменениях входного напряжения и нагрузки не превышают 1 мВ. Существенно болешие значения имеют температурные колебания опорного напряжения. Температурный коэффициент напряжения стабилизации стабилитрона (ТКН) определяется как отношение относительного приращения напряжения стабилизации к приращению температуры

ТКН = VCT/ ( VCT T).

Для большинства стабилитронов он находится в пределах + /—1*10-3К-1.

Для малых напряжений стабилизации он отрицателен, для больших — положителен. Это вызвано тем, что в стабилитронах имеют место два механизма пробоя: туннельный, проявляющийся на низких напряжениях (его напряжение имеет отрицательный ТКН), и вторичный (зенеровский), для которого характерен положительный ТКН, существенный на больших напряжениях. Минимума по абсолютной величине этот коэффициент достигает при напряжениях стабилизации около 6 В, причем напряжение, соответствующее нулевому ТКН, зависит от тока через стабилитрон. Стабилитроны, имеющие ТКН в пределах +10-5 К-1, называют опорными диодами и обычно используют в схемах ИОН на напряжения, превышающие 7.5 В. Примером такого источника опорного напряжения может служить ИМС МАХ671С, обеспечивающая выходное напряжение 10 В с точностью 0.01% при КСТ = 20000, ТКН = 310-6 К-1 и токе потребления 9 мА. Другой пример — AD586 (отечественный аналог — 1009ЕН2) создает выходное напряжение 5 В с точностью 0.05% при А"сх = 10000, ТКН = 210-6 К-1 и токе потребления 3 мА.

Рекордными характеристиками для этого класса ИОН обладает 5-вольтовая ИМС VRE3050 производства фирмы «Thaler Corporation» — ТКН = 0.6-10-6 К-1, точность 0.01%, выходное сопротивление 0.025 Ом.

Для повышения температурной стабильности в некоторые ИМС источников опорного напряжения (например, LM199/299/399, отечественный аналог — 2С483) встраивают термостаты с нагревательным элементом. Обе части схемы (нагреватель и ИОН) изготавливаются на одном кристалле, который помещается в теплоизолированном корпусе. Это позволяет достичь ТКН < 1х10-6 К-1 в диапазоне температур—25°С...+85°С, причем время, требуемое для установления рабочего режима после включения, составляет всего 3 с. Недостаток такого решения — довольно большая мощность, потребляемая этим источником опорного напряжения (около 400 мВт при 25°С).__



2015-12-15 2366 Обсуждений (0)
Последовательный компенсационный стабилизатор с применением операционного усилителя 0.00 из 5.00 0 оценок









Обсуждение в статье: Последовательный компенсационный стабилизатор с применением операционного усилителя

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2366)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)