Мегаобучалка Главная | О нас | Обратная связь


Определение размеров допустимых обнажений кровли очистных пространств



2016-01-02 1917 Обсуждений (0)
Определение размеров допустимых обнажений кровли очистных пространств 0.00 из 5.00 0 оценок




Общие замечания.

В этой группе систем разработки поддержание очистного пространства осуществляется за счет естественной устойчивости обнажений массивов полезного ископаемого и вмещающих пород. Следует заметить, что данная группа систем разработки применяется, как правило, в условиях устойчивых массивов пород.

При этом управление геомеханическими процессами осуществляется поддержанием открытого выработанного пространства и налегающей толщи (часто, до поверхности) целиками, оставляемыми в выработанном пространстве на длительный срок.

Основные расчётные параметры: – пролеты очистных камер, сетка оставления целиков, размеры целиков (ширина или диаметр), должны обеспечить:

· устойчивость всех элементов системы разработки – очистных камер и целиков;

· безопасность горных работ в открытом выработанном пространстве;

· условия для эффективного применения высокопроизводительного самоходного добычного оборудования;

· минимальные потери и разубоживание руды.

 

Вообще под устойчивым состоянием понимают такое состояние какого-либо элемента системы, когда без дополнительных мероприятий обеспечивается безопасность работающих людей и нормально выполняется технологический цикл.

На основе общих представлений механики устойчивость какой-либо системы может быть охарактеризована условиями, обеспечивающими сохранение ее состояния в течение заданного времени. Применительно к элементам систем устойчивость можно определить как способность сохранения, во-первых, формы и, во-вторых, размеров элементов, обеспечивающих их эксплуатацию в течение необходимого периода.

Очевидно, в такой постановке вопроса устойчивое состояние любых элементов системы разработки определяется соотношением действующих в массиве пород напряжений и деформационно-прочностных свойств пород, слагающих рассматриваемый элемент. Существенно зависит состояние элементов и от ряда технологических факторов: взрывных работ; размеров шахтного поля или добычного участка (панели, блока и т.п.); способа погашения ранее отработанных очистных пространств и др.

 

Если конкретно говорить об обнажениях пород (в кровле или боках очистной выработки), то очевидно, что для каждого сочетания горно-геологических условий (в конечном счёте, сочетания действующих напряжений и деформационно-прочностных свойств массива) существуют определенные размеры обнажений пород в выработках, при превышении которых выработки приходят в неустойчивое состояние и их эксплуатация становится небезопасной. В подобных случаях параметры элементов систем разработки либо выбирают таким образом, чтобы обнажения пород не превышали критических размеров для действующего в элементах уровня напряжений, либо упрочняют эти элементы, применяя различные виды крепи или технологические приёмы.

При системах с естественным поддержанием выработанного пространства с целью регулирования размеров обнажений пород оставляют целики, т. е. нетронутые участки рудного тела, пласта или вмещающих пород. При этом в зависимости от применяемой технологии целики или извлекают после отработки основной части полезного ископаемого на участке, горизонте, или же оставляют в недрах, что, естественно, приводит к увеличению потерь полезных ископаемых. Извлечение целиков, как правило, сопровождается трудностями в организации и обеспечении работ, а иногда требует применения специфических систем разработки.

В случаях, если оставляют целики излишне больших размеров, это приводит к неоправданным потерям, если же размеры целиков недостаточны, то происходит их разрушение, которое влечет за собой перераспределение напряжений в окружающем массиве пород, часто в обширных областях. При этом разрушение целиков на одном участке может вызвать лавинообразное разрушение целиков на соседних участках. С этой точки зрения оставление недостаточных по размерам целиков может приводить к гораздо большим трудностям, нежели ведение работ вообще без оставления целиков.

 

Все параметры элементов любой системы разработки взаимосвязаны и взаимообусловлены, они образуют единую «связку» в массиве горных пород. Поэтому для обоснованного определения их оптимальных параметров в общем случае необходимо рассматривать напряженно-деформированное состояние всей «связки» элементов. При системах рассматриваемого класса эта «связка» состоит из почвыочистной выработки — целика — кровли очистной выработки — толщи вышележащих пород — дневной поверхность.

В принципе, наилучшим способом исследования «связок» являются аналитические методы и методы математического моделирования. При этом возможна оценка как состояния всей «связки» в целом, так и отдельных её элементов, практически, с любой степенью детальности.

Однако в практике горных работ весьма часто возникают потребности оценить состояние и выбрать оптимальные параметры каких-либо локальных элементов, не прибегая к исследованию всей указанной цепочки. Для подобных случаев весьма широко применяется подход, когда в каждом конкретном случае стремятся выявить наиболее слабое звено—лимитирующий элемент, устойчивое состояние которого предопределяет состояние всех остальных звеньев, и, исходя из параметров этого элемента, устанавливают остальные параметры элементов всей системы разработки.

Часто подобными лимитирующими элементами является кровля камер, во многих случаях лимитирующими элементами будут целики, реже — почва выработок. Лимитирующим элементом может быть вышележащая толща пород. Это характерно для условий применения комбинированных систем разработки рудных тел открытым и подземным способом, а также для условий добычи легкорастворимых полезных ископаемых (например, солей) и при ведении горных работ под водоемами, когда необходимо обеспечивать устойчивость пород во избежание трещин, провалов, прорывов воды и пр. Наконец, лимитирующим элементом может являться и дневная поверхность в случаях, когда необходимо обеспечить устойчивость наземных зданий и сооружений.

 

В данной теме рассмотрим вопросы естественного поддержания выработанного пространства в случаях, когда лимитирующими элементами являются кровля очистных выработок и опорные целики.

Для расчета оптимальных параметров очистных выработок и целиков необходимо:

а) установить характеристики нагрузок (величины напряжений в массиве пород), действующих на элементы системы разработки, размеры которых подлежат определению;

б) на основании характеристик напряженно-деформированного состояния и сравнения их с деформационно-прочностными параметрами пород, слагающих кровлю и целики, оценить несущую способность и устойчивость этих элементов.

Первый пункт указанной последовательности операций может быть выполнен с привлечением различных методов (теоретических и экспериментальных), о которых речь шла выше. Он является необходимым при оценке несущей способности целиков и обнажений пород, но принципиальных отличий от методов определения напряженного состояния массива пород вокруг выработок не имеет. Второй пункт составляет сущность расчета оптимальных параметров целиков и обнажений пород в очистных выработках. Он в обязательном порядке включает проверку указанных элементов систем разработки на прочность и устойчивость.

 

Методы определения параметров предохранительных и охранных целиков, когда лимитирующими элементами являются вышележащая толща пород и дневная поверхность будут освещены позже, при рассмотрении вопросов управления геомеханическими процессами при других классах систем разработки.

 

Определение размеров допустимых обнажений кровли очистных пространств.

При разработке месторождений полезных ископаемых лимитирующим элементом часто является кровля выработок, поскольку именно здесь, в первую очередь, возможно образование областей растягивающих напряжений, к которым особенно чувствительны массивы горных пород вследствие своих структурных особенностей и деформационно-прочностных свойств. Наряду с этим в кровле очистных выработок, особенно в областях, примыкающих к целикам, могут образовываться зоны действия высоких сжимающих напряжений. Это может иметь место, когда очистные выработки располагаются в однородных или близких по деформационно-прочностным характеристикам породах, и при этом целики полностью сохраняют сцепление с массивом пород по своим основаниям.

Таким образом, задача об определении параметров устойчивых очистных выработок может быть сведена к нахождению размеров предельных обнажении пород в кровле выработок.

В основе определения предельных размеров обнажении пород лежат предрасчеты напряженно-деформированного состояния пород вокруг очистных выработок и сравнение их с соответствующими критериями. В качестве таких критериев могут быть приняты либо деформации и напряжения, либо размеры областей или зон, где проявляются, концентрируются опасные деформации и напряжения.

Оба вида критериев используют, например, в методах оценки устойчивости кровли очистных выработок, разработанных профессором В. Д. Слесаревым [Слесарев В.Д. Крепление подземных выработок. – М.: Гостоптехиздат, 1940.].

При этом в основу подхода В.Д. Слесарева положено понятие об эквивалентном предельном пролете, под которым подразумевается ширина выработки неограниченной длины, устойчивость которой эквивалентна устойчивости кровли выработки произвольной формы. Другими словами, В.Д. Слесарев сделал попытку устойчивость изометрической выработки весьма сложных неправильных очертаний привести к устойчивости протяжённой выработки с одним единственным параметром – шириной – пролётом.

Такой подход завоевал большую популярность, был оправдан достаточной простотой и наглядностью, он давал достаточно приемлемые с точки зрения практики результаты, в частности, для пластовых месторождений, где структурные неоднородности выражены несколько слабее и представлены, главным образом, контактами по слоям. В силу же этой особенности в подходах В. Д. Слесарева учитываются, главным образом, только один из возможных видов разрушения — отрыв.

Величина эквивалентного пролета обнажения, защемленного по всему периметру, В.Д. Слесарев предложил определять по формуле

a b

L = ------------,(5.1)

a2 + b2

где a, b – размеры сторон обнажения, м.

При этом критерием устойчивости обнажения принимается неравенство

L ≤ lпр,(5.2)

где lпр предельный перед обрушением пролёт выработки неограниченной длины, определяемый расчётным или опытным путём.

На основе изложенного подхода были предложены различные эмпирические формулы для разнообразных горно-геологических условий.

Например, для условий железорудных месторождений Кривого Рога было [Инструкция по определению геометрических параметров этажно-камерных систем разработки в Криворожском железорудном бассейне. Кривой Рог: изд. НИГРИ, 1973.] установлено, что предельный эквивалентный пролет наклонного обнажения пород в камерах составляет:

a b

lпр.н = ----------,(5.3)

a2 + b2

где a, b – соответственно размеры камер по простиранию и падению залежи, м.

 

Величина предельного пролёта горизонтального обнажения пород в кровле очистных камер в нетрещиноватых однородных породах может быть вычислена, исходя из параметров свода обрушения над выработкой, по формуле [Фисенко Г.Л. Предельные состояния горных пород вокруг выработок – М.: Недра, 1976]

5 σр

lпр = ----------,(5.4)

2γ

где σр – предел прочности пород на растяжение, МПа; γ – плотность пород в кровле, т/м3.

В случае трещиноватых пород величина предельного пролёта горизонтального обнажения пород в кровле очистных камер вычисляется с учётом коэффициента структурного ослабления трещиноватого массива λ:

5 σр

lпр = ---------- λ.(5.5)

2 γ

В формулах (5.4) и (5.5) в качестве параметра используется только предел прочности пород на растяжение, т. е. учитывается только один из возможных видов разрушения — отрыв при действии растягивающих напряжений.

На практике образование зоны растягивающих напряжений, а, следовательно, и области возможного разрушения кровли в результате отрыва пород предотвращают, оформляя кровлю очистных камер в виде свода Параметры свода для камер с отношением высоты (b) к пролету (l) до 1/10 приближенно можно устанавливать из условия

b 11

----- = ----- ¸-----(5.6)

l 45

где b —стрела подъема свода; l —пролет очистной выработки.

Вместе с тем в реальных условиях разрушения в массивах горных пород происходят и при действии сжимающих напряжений в форме сдвига или скола, в первую очередь, по контактам структурных неоднородностей того или иного порядка.

Для учета этого вида разрушения—сдвига, особенно характерного для массивов пород блочной структуры, можно использовать условия [(3.8), тема 3], которые применяют при расчете параметров зон нарушенных пород вокруг капитальных и подготовительных выработок. Применимость этих условий к очистным выработкам подтверждается натурными наблюдениями за состоянием приконтурной области массива пород вокруг очистных выработок.

Инструментальными измерениями установлено, что вокруг очистных выработок, как и вокруг подготовительных, образуется зона нарушенных пород, в пределах которой наблюдаются раскрытые трещины и частично нарушается связь между структурными блоками. В результате создается реальная опасность вывалов пород. Для скальных массивов предельный безопасный размер зоны нарушенных пород от контура очистной выработки в глубь массива составляет 0,4 м.

Рассчитывая размеры зоны нарушенных пород по формулам (3.8) и сравнивая расчетные значения с предельными безопасными, оценивают устойчивость очистных выработок. Если расчетные значения превышают критические, следует предусматривать специальные мероприятия по обеспечению устойчивости выработок — уменьшение площади обнажения пород путем оставления целиков, путём изменения размеров и конфигурации очистных камер или возведение крепи.

Глубиной распространения зоны нарушенных пород от контура выработок в сторону массива определяются также размеры возможных вывалов из кровли, в частности их высота (рис 5.1).

Рис 5.1. Схема действия сил на структурный блок в кровле и стенке выработки после реализации скола по поверхностям структурных неоднородностей - граням выделенных структурных блоков

 

 

Для условий очистных выработок проводить оценку устойчивости только по параметрам зоны нарушенных пород недостаточно, поскольку вследствие больших площадей обнажения пород в них возможны вывалы и обрушения блоков плитообразной формы. В этих случаях при незначительной высоте вывалов поперечные размеры их в плане могут быть очень велики. Подобные обрушения весьма опасны, так как помимо непосредственной угрозы людям они могут вызывать разрушительные воздушные волны и создавать опасные напряжения в массиве от удара обрушившихся масс. Вследствие этого при определении размеров предельных обнажений в очистных выработках необходимо задаваться не только критическим размером зоны нарушенных пород, но и максимально допустимыми линейными размерами (в плане) отдельных вывалов и обрушений.

Линейные размеры вывалов (в плане) находятся в определенной взаимосвязи между собой и, кроме того, определяются соотношениями объемного веса пород, напряжений распора структурных блоков и коэффициентов трения по контактам структурных неоднородностей, ограничивающих эти структурные блоки.

Эти соотношения в первом приближении могут быть выражены следующим условием образования вывалов:

g11

--------³ ------ + --------(5.7)

2 f0 P a b

 

где а и b — поперечные размеры возможных вывалов или обрушений (в плане); Р—распор структурных блоков; fo—коэффициент трения по поверхностям структурных неоднородностей, g - объёмный вес пород.

 

Это неравенство в системе координат (а, b) представляет собой гиперболическую кривую, разграничивающую области устойчивых и неустойчивых обнажении.

Из параметров, входящих в зависимость (5.7), наиболее трудно определяются коэффициенты трения по поверхностям структурных неоднородностей и напряжения распора структурных блоков в пределах зоны нарушенных пород.

Экспериментальные данные о коэффициентах трения по поверхностям структурных неоднородностей практически отсутствуют. Имеющиеся единичные результаты определения коэффициентов трения для некоторых разновидностей руд и пород приведены в табл.5.1.

Коэффициенты трения некоторых горных пород и руд.

Таблица 5.1

Тип пород (руды) Коэффициенты трения
  движения покоя
Пятнистая апатитовая руда 0.33 0.46
Рисчоррит 0.15 0.33
Сфеновый ийолит 0.26 0.38
Ийолит-уртит 0.25 0.47
Мончикит 0.19 0.38
Луяврит 0.25 0.53

 

Из табл.5.1 следует, что значения коэффициента трения движения для указанных пород колеблются в пределах 0,15 — 0,33, а коэффициента трения покоя — в пределах 0,33 — 0,47. Очевидно, для расчетов целесообразнее использовать коэффициенты трения движения с тем, чтобы возможная погрешность шла в запас прочности.

Распор структурных блоков Р пока не представляется возможным надежно измерять в натурных условиях. Однако можно предположить, что верхний его предел можно установить, исходя из горизонтальных напряжений в кровле очистных выработок, если бы зона нарушенных пород отсутствовала. При таком предположении распор структурных блоков можно приближенно оценивать по результатам аналитических определений напряженно-деформированного состояния массива вокруг очистных выработок. Распор структурных блоков может также устанавливаться и методом обратных расчетов, если в условиях (5.7) известны (например, из натурных наблюдений за устойчивостью выработок) размеры отдельных вывалов.

Вполне очевидно, что при увеличении распора Р структурных блоков или коэффициентов трения fo по поверхности структурных неоднородностей размеры устойчивых обнажении возрастают.

На рис 5.2 приведена диаграмма устойчивых обнажений кровли очистных выработок в зависимости от напряжений бокового распора структурных блоков Р и коэффициента трения fo по поверхностям структурных неоднородностей. Значение объемного веса g ввиду его сравнительно малой изменчивости для массивов скальных пород принято постоянным (g =3,0 тс/м3).

 

Рис 5.2. Области устойчивых обнажении кровли выработок при различных значениях удельной силы трения.

 

 

Из диаграммы следует, например, что если произведение Pfo = l, то предельные размеры устойчивых обнажении aхb составляют всего лишь 2х1 м (точка А); 3х0,8 м (точка Б) и т. п. Если произведение Pfo =10, то предельные размеры устойчивых обнажении возрастают до 13,5х13,5 м (точка В); 20х10 м (точка Г) и т. п.

Во многих случаях непосредственную опасность могут представлять вывалы пород и из стенок выработок, особенно для условий большепролетных подземных сооружений типа машинных залов гидроэлектростанций, туннелей и т. д. При этом, в отличие от кровли, размеры вывалов из стенок выработок определяются лишь одним параметром — размером вывала вдоль выработки, но в предположении наличия горизонтальных естественных трещин, по которым возможен отрыв выпадающего блока.

Аналитически это выражается формулой:

g sin d 1

------ --³ ---- , (5.8)

2 f0 P b

где d - угол наклона плоскостей эффективных структурных неоднородностей (в частном случае, углы падения крупноблоковых естественных трещин для очистных выработок или подземных сооружений)

На рис. 5.3 представлена диаграмма для определения размеров возможных вывалов из стенок большепролетных выработок при различных значениях углов наклона d, структурных неоднородностей, по которым происходит скольжение вывала.

Рис. 5.3. Диаграмма для определения размеров возможных вывалов b из стенок большепролетных выработок при различных значениях углов наклона плоскостей скольжения d и силы трения.

Графическое представление предельных размеров устойчивых обнажений пород в выработках в виде некоторого семейства кривых было впервые предложено профессором Г. А Крупенниковым в 1952 г при изучении устойчивости выработок в условиях Подмосковного бассейна. При этом устойчивость выработок Г. А. Крупенников оценивал по смещениям кровли и к устойчивым обнажениям относил обнажения, при которых не происходило обрушений пород в течение определенного, заданного условиями технологии выемки угля, периода времени.

Аналогичным образом можно приближенно устанавливать параметры устойчивых обнажений по результатам визуального обследования.

На рис 5.4 в качестве примера приведена диаграмма устойчивых обнажений, построенная по данным визуальных обследований выработок на одном из медноникелевых месторождений Кольского полуострова, где разрабатывалась свита вертикальных маломощных жил системой с открытым очистным пространством и распорной деревянной крепью. При этом все обнажения пород на месторождении с некоторой условностью относили к одному из следующих трех случаев:

видимые нарушения пород отсутствовали, обнажение считалось устойчивым;

проявления горного давления слабые: это выражалось в раскрытии отдельных небольших трещин в боковых породах, в образовании небольших заколов на локальных участках выработок, в изгибании или поломке отдельных элементов крепи в очистных блоках;

проявления горного давления весьма интенсивные: ярко выраженные заколы по обеим стенкам штреков, изгиб и поломка крепи в блоках, обрушение и завал штреков.

Рис. 5.4. Диаграмма устойчивости обнажении пород по результатам визуальных обследований (рудник Ниттис-Кумужья, Кольский полуостров).

Область: 1 - устойчивых обнажений, 2 - слабых проявлений горного давления, 3 - интенсивных проявлений горного давления.

На осях координат указаны размеры выработанного пространства по падению а и по простиранию б.

 

Кроме рассмотренных, известны способы расчета устойчивых обнажений кровли очистных выработок на основе определения разрушающих нагрузок.

При этом, выполняя расчеты устойчивости кровли камер по разрушающим нагрузкам, следует вводить в расчетные размеры необходимый коэффициент запаса, обеспечивающий надежность использования расчетных параметров. Однако в настоящее время отсутствуют обоснованные рекомендации по выбору оптимального коэффициента запаса, обеспечивающего как безопасность ведения горных работ, так и экономичность инженерных решений. На практике коэффициент запаса принимают обычно равным 2—3, а для особо ответственных случаев и больше.

Помимо рассмотренных основных факторов, определяющих устойчивость пород в выработках, предельные размеры обнажении зависят и от ряда других факторов, учет которых может представлять иногда существенные трудности. К этим факторам относятся, например, снижение деформационно-прочностных характеристик пород с течением времени, влияние взрывных работ и др. Поэтому в практике в качестве наиболее надежного способа определения параметров устойчивых обнажений широко применяют производственные эксперименты. Сущность таких экспериментов заключается в постепенном увеличении пролетов камер до предельных, устанавливаемых по критическому состоянию кровли (до первого обрушения кровли или до заданной величины ее прогиба).

Например, подобными экспериментами и практикой горных работ установлено, что на рудниках Жезказгана устойчивыми являются пролеты камер:

· если кровля представлена серыми песчаниками - 15 м;

· если кровля сложена красноцветными породами - 12¸13 м.

На Белоусовском руднике (филиал ВостокКазмедь) при разработке пологих участков залежей камерно-столбовой системой устойчивые пролеты камер по многолетнему практическому опыту (разработку Белоусовского месторождения ведут уже более 200 лет) составляют 7¸8 м.

 

Путем обобщения практического опыта применительно к тем или иным конкретным условиям месторождений составляются частные классификации пород по устойчивости кровли. Основой этих классификаций обычно служат качественные признаки: петрографический состав, структурные и текстурные особенности пород, глубина заложения выработок, гидрогеологические условия и др.

Так, академик АН СССР М И. Агошков подразделяет горные породы по устойчивости кровли на 5 групп:

1. Породы весьма неустойчивые, не допускающие даже незначительных обнажений в кровле и боках выработки без крепления, т. е. требующие, как правило, применения опережающей крепи.

2 Породы неустойчивые, допускающие небольшие обнажения кровли и боков, т. е. требующие поддержания непосредственно вслед за выемкой.

3 Породы средней устойчивости, допускающие обнажения на относительно большой площади, т. е не требующие поддержания их сразу вслед за выемкой.

4 Породы устойчивые, допускающие значительные обнажения и требующие поддержания только в отдельных местах или через некоторые интервалы.

5 Породы весьма устойчивые, допускающие весьма большие обнажения без крепления.

При этом М И Агошков указывает, что сразу после обнажения породы часто не проявляют признаков неустойчивости, но через некоторое время вследствие изменения свойств пород во времени и под воздействием процессов выветривания становятся непрочными и теряют устойчивость.

Классификацию пород кровли по устойчивости с учетом времени существования обнажений приводит профессор А. А. Борисов. В этой классификации породы разделены на неустойчивые, слабоустойчивые, среднеустойчивые, устойчивые и весьма устойчивые.

К неустойчивым отнесены породы, которые без крепления не дают устойчивых обнажений, т е. обрушаются вслед за подвиганием забоя. Слабоустойчивые породы сохраняют устойчивость в призабойной полосе шириной до 1 м в течение 2—3 ч. Среднеустойчивые породы обеспечивают устойчивость обнажении в призабойной полосе шириной до 2 м в течение 1 сут., устойчивые — в течение 2 сут. Весьма устойчивые породы обладают длительной устойчивостью в призабойной полосе шириной 5—6 м.

На эксплуатируемых месторождениях со стабильными горно-геологическими и горнотехническими условиями отнесение пород к той или иной группе (классу) рассмотренных классификаций больших трудностей обычно не представляет.

 



2016-01-02 1917 Обсуждений (0)
Определение размеров допустимых обнажений кровли очистных пространств 0.00 из 5.00 0 оценок









Обсуждение в статье: Определение размеров допустимых обнажений кровли очистных пространств

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1917)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.015 сек.)