Мегаобучалка Главная | О нас | Обратная связь


Математическое ожидание случайной величины, его вероятностный смысл и свойства



2016-01-05 1736 Обсуждений (0)
Математическое ожидание случайной величины, его вероятностный смысл и свойства 0.00 из 5.00 0 оценок




В некоторых случаях закон распределения случайной величины неизвестен, или просто целесообразно использовать не таблицу или функцию распределения для представления случайной величины, а так называемые числовые характеристики ее распределения, в частности математическое ожидание.

Математическое ожидание дискретной случайной величины – это сумма парных произведений всех возможных ее значений на соответствующие вероятности:

,где .

Очевидно, математическое ожидание случайной величины не изменится, если таблицу значений этой случайной величины пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю.

Математическое ожидание случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины .

Вероятностный смысл математического ожидания: математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания можно сформулировать в виде теорем. Доказательства этих теорем будут приведены для дискретных случайных величин, однако, соответствующие теоремы справедливы также и для непрерывных случайных величин.

Прежде, чем формулировать свойства математического ожидания необходимо выяснить смысл и дать определение арифметических операций , , и т.п., где и – дискретные случайные величины.

Например, под суммой понимается случайная величина , значениями которой являются все допустимые суммы , где и – все возможные значения соответственно случайных величин и ; причем соответствующие вероятности равны:

.

Если какая-нибудь комбинация невозможна, то условно полагают ; это не отразится на математическом ожидании суммы. Аналогично определяются и остальные операции.

Свойства математического ожидания

1. Теорема. Математическое ожидание постоянной величины равно этой величине.

Доказательство. Постоянную величину можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение с вероятностью . Поэтому .

2. Теорема. Математическое ожидание суммы двух (или нескольких) случайных величин и равно разности их математических ожиданий:

.

Доказательство:

1) Пусть случайная величина принимает значения с вероятностями ( ), а случайная величина принимает значения с вероятностями ( ). Тогда возможными значениями случайной величины будут суммы , вероятности которых равны:

.

Как уже отмечалось ранее, все комбинации ( ) ( , ) можно считать допустимыми, причем, если сумма невозможна, то полагаем, что .

Сумма представляет собой вероятность события, состоящего в том, что случайная величина принимает значения при условии, что случайная величина примет одно из своих возможных значений (что достоверно); это сложное событие, очевидно, эквивалентно тому, что принимает значение и поэтому .

Аналогично .

Тогда .

2) Для нескольких случайных величин, например для трех , и , имеем:

, и т.д.

Следствие. Если – постоянная величина, то:

3. Теорема. Математическое ожидание произведения двух независимых случайных величин и равно произведению их математических ожиданий:

.

Доказательство. Пусть случайная величина принимает значения ( , ) ( ) и ( , ) ( ) – законы распределения случайных величин и . Так как и – независимы, то полный набор значений случайной величины состоит из всех произведений ( , ), причем вероятности этих значений по теореме умножения для независимых событий равны

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.

Действительно, например, для трех взаимно независимых случайных величин , и :

, и т.д.

Следствие. Постоянный множитель можно выносить за знак математического ожидания, т.е. . Если – постоянная величина и – любая случайная величина, то, учитывая, что и – независимы, получим:

.

Следствие. Математическое ожидание разности двух случайных величин и равно разности их математических ожиданий:

Доказательство.

.

 

 



2016-01-05 1736 Обсуждений (0)
Математическое ожидание случайной величины, его вероятностный смысл и свойства 0.00 из 5.00 0 оценок









Обсуждение в статье: Математическое ожидание случайной величины, его вероятностный смысл и свойства

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1736)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)